K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2019

Đáp án A

Phương pháp:

- Tìm TXĐ

- Tìm nghiệm và các điểm không xác định của y’ trên đoạn 1 2 ; e

 Tính các giá trị tại  1 2 ,   e  và các điểm vừa tìm được

- Kết luận GTLN, GTNN của hàm số từ các giá trị trên.

Cách giải:

TXĐ: D = (0;+∞)

⇒ Giá trị nhỏ nhất, giá trị lớn nhất của hàm số lần lượt là: 1 và e - 1

3 tháng 1 2019

Chọn B

10 tháng 11 2017

4 tháng 10 2018

Chọn A

Tập xác định D = R\{-1}

14 tháng 10 2019

2 tháng 10 2019

Chọn C

Hàm số y =  x 2 + x + 4 x + 1  là hàm phân thức có tập xác định là  nên nó liên tục trên [0;2], từ đó ta vận dụng quy tắc tìm giá trị lớn nhất và nhỏ nhất không cần xét dấu đạo hàm.

Ta có 

=> A = 4, a = 3.

Vậy a + A = 7.

16 tháng 10 2017

4 tháng 12 2018

Chọn B

Hàm số xác định và liên tục trên đoạn [1;4]. Đặt y = f(x)

Ta có: 

Có 

Vậy m + M = 16.

6 tháng 4 2017