K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Lời giải:
Đặt $\sqrt[3]{1-x}=a; \sqrt[4]{1+x}=b$ thì bài toán trở thành:

Cho $a,b\geq 0$ thỏa mãn $a^4+b^4=2$

Tìm max $P=ab+a+b$

Thật vậy, áp dụng BĐT AM-GM:

$2=a^4+b^4\geq 2a^2b^2\Rightarrow ab\leq 1$

$a^4+b^4\geq \frac{1}{2}(a^2+b^2)^2$

$a^2+b^2\geq \frac{1}{2}(a+b)^2$

$\Rightarrow 2=a^4+b^4\geq \frac{(a+b)^4}{8}$

$\Rightarrow (a+b)^4\leq 16$

$\Rightarrow a+b\leq 2$

Do đó: $P=ab+a+b\leq 1+2=3$

Vậy $P_{\max}=3$ khi $a=b=1\Leftrightarrow x=0$

 

NV
29 tháng 3 2021

\(y=x+\dfrac{1}{x}-5\ge2\sqrt{x.\dfrac{1}{x}}-5=-3\)

Đáp án C

20 tháng 6 2019

17 tháng 2 2017

Chọn B

Hàm số xác định khi và chỉ khi 

Vậy tập xác định 

29 tháng 11 2019

28 tháng 3 2021

TXĐ: \(D=R\)

\(f'\left(x\right)=4x^3-24x\)

\(f'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{6}\\x=-\sqrt{6}\left(loai\right)\end{matrix}\right.\)

\(\begin{matrix}f\left(0\right)=-1\\f\left(\sqrt{6}\right)=-37\\f\left(9\right)=5588\end{matrix}\)

suy ra chọn D

 

5 tháng 10 2017

Chọn C

Quan sát đồ thị ta thấy hàm số y = f(x) đạt giá trị nhỏ nhất trên [-1;3] là -1 tại điểm x = =-1 và đạt giá trị lớn nhất trên[-1;3] là 4 tại điểm x = 3. Do đó M = 4, m = -1.

Giá trị M - m = 4 - (-1) = 5.