Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(|x-1|\ge0\)
\(|x-2|\ge0\)
.................
\(|x-2019|\ge0\)
=> \(A\ge0\)
Vậy giá trị nhỏ nhất của A là 0
\(A=\left|x-13\right|+\left|x-14\right|+\left|x-15\right|+\left|x-16\right|+\left|x-17\right|-10\)
\(=\left(\left|x-13\right|+\left|x-16\right|\right)+\left(\left|x-14\right|+\left|x-17\right|\right)-10+\left|x-15\right|\)
\(=\left(\left|x-13\right|+\left|16-x\right|\right)+\left(\left|x-14\right|+\left|17-x\right|\right)-10+\left|x-15\right|\)
\(\Rightarrow A\ge\left|x-13+16-x\right|+\left|x-14+17-x\right|-10+\left|x-15\right|\)
\(=\left|3\right|+\left|3\right|-10+\left|x-15\right|\)\(=3+3-10+\left|x-15\right|=-6+\left|x-15\right|\)
Vì \(\left|x-15\right|\ge0\forall x\)\(\Rightarrow A\ge-6\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-13\right)\left(16-x\right)\ge0\\\left(x-14\right)\left(17-x\right)\ge0\\x-15=0\end{cases}}\Leftrightarrow\hept{\begin{cases}13\le x\le16\\14\le x\le17\\x=15\end{cases}}\Leftrightarrow x=15\)
Vậy \(minA=-6\Leftrightarrow x=15\)
Xét: /x/ >/ 0 với mọi x
<=>/x/+15 >/ 15 với mọi x
<=>(/x/+15)-3 >/ 15-3=12 với mọi x
Do đó Amin=12
Dấu "="́ xảy ra<=>/x/=0 hay x=0
Vậy....