Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2
\(S1=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{100.102}\)
\(S1=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{100.102}\right)\)
\(S1=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{102}\right)\)
\(S1=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{102}\right)\)
\(S1=\frac{1}{2}.\left(\frac{51}{102}-\frac{1}{102}\right)\)
\(S1=\frac{1}{2}.\frac{25}{51}\)
\(S1=\frac{25}{102}\)
a)để A là phân số => x khác 1/2
b) Để A∈∈Z
=> 2x+5⋮2x−12x+5⋮2x−1
ta có : 2x-1⋮⋮2x-1
=>(2x+5)-(2x-1)⋮⋮2x-1
=>6⋮⋮2x-1
=> 2x-1∈∈Ư(6)={±±1;±±2;±±3;±±6}
ta có bảng :
2x-1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | 1 | 0 | 3232 | −12−12 | 2 | -1 | 7272 | −52−52 |
Mà A ∈∈Z
Vậy x∈∈{±±1;0;2}
c) ta có :A= 2x−52x−1=2x−1−42x−1=2x−12x−1−42x−1=1−42x−12x−52x−1=2x−1−42x−1=2x−12x−1−42x−1=1−42x−1
để A lớn nhất
=>1−42x−11−42x−1lớn nhất
=> 2x-1<0 và 2x-1 lớn nhất
=> 2x-1=-1
=>2x=0
=>x=0
Vậy tại x =0 thì A đạt giá trị lớn nhất
cau 1 :1,6
câu 2 : sai đề bài
cau 3 chua lam duoc
cau 4 : chua lam duoc
cau 5 :101/10
1) 2n - 5 \(⋮\)n + 1
2(n + 1) - 7 \(⋮\)n + 1
Do 2(n+1) \(⋮\)n+1 nên 7 \(⋮\)n+1 \(\Rightarrow\)n + 1 \(\in\)Ư(7) = { 1; -1; 7; -7}
Với n + 1 = 1 \(\Rightarrow\)n = 0
n + 1 = -1 \(\Rightarrow\)n = -2
n + 1 = 7 \(\Rightarrow\)n = 6
n + 1 = -7 \(\Rightarrow\)n = -8
Vậy n = { 0; -2; 6; -8}
Gọi biều thức trên là A, ta có:
A=(1/2.4+1/4.6+1/6.8+1/8.10+1/10.12)x=2
2A=(2/2.4+2/4.6+2/6.8+2/8.10+2/10.12)x=2
2A=(1/2-1/4+1/4-1/6+1/6-1/8+1/8-1/10+1/10-1/12)x=2
2A=(1/2-1/4+1/4-1/6+1/6-1/8+1/8-1/10+1/10-1/12)x=2
2A=(1/2-1/12)x=2
2A=5/12x=2
=>A=5/24x=1
=>x=1:5/24=24/5
=>1/2.(5/12).x=1
5/24.x=1
x=1:5/24
x=24/5
lưu ý, 1/2.5/12 là tính xong phần 1/2.4 +...+1/10.12 rùi nhé
\(a,\frac{1}{3}x+\frac{2}{5}x-\frac{2}{5}=0\)
\(\frac{11}{15}x=\frac{2}{5}\)
\(x=\frac{6}{11}\)
b,\(\left(2x-3\right).\left(6-2x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-3=0\\6-2x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{3}{2}\\x=3\end{cases}}\)
Vậy