Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(2x-4\right)^4\ge0\forall x\)
\(\Leftrightarrow\left(2x-4\right)^4+5\ge5\forall x\)
Dấu '=' xảy ra khi 2x-4=0
\(\Leftrightarrow2x=4\)
hay x=2
Vậy: Giá trị nhỏ nhất của biểu thức \(M=\left(2x-4\right)^2+5\) là 5 khi x=2
b) Ta có: \(\left|x+2\right|\ge0\forall x\)
\(\Leftrightarrow-\left|x+2\right|\le0\forall x\)
\(\Leftrightarrow\left|x+2\right|+10\le10\forall x\)
Dấu '=' xảy ra khi x+2=0
hay x=-2
Vậy: Giá trị lớn nhất của biểu thức \(N=10-\left|x+2\right|\) là 10 khi x=-2
a/ Để A nhỏ nhất thì |x-7| là nhỏ nhất
=> |x-7| = 0
Vậy GTNN của A là : 0-1= -1
Ta có : \(x^2+y^2=4< =>x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
\(< =>4\ge\frac{\left(x+y\right)^2}{2}< =>\left(x+y\right)^2\le4.2=8< =>x+y\le\sqrt{8}\)
Hay \(x+y\le\sqrt{8}\)
Dấu = xảy ra khi và chỉ khi \(x=y=\sqrt{2}\)
Vậy GTLN của P = \(\sqrt{8}\)đạt được khi và chỉ khi \(x=y=\sqrt{2}\)
Bài 4:
\(A=2x^2-15\ge-15\\ A_{min}=-15\Leftrightarrow x=0\\ B=2\left(x+1\right)^2-17\ge-17\\ B_{min}=-17\Leftrightarrow x=-1\)
Bài 5:
\(A=-x^2+14\le14\\ A_{max}=14\Leftrightarrow x=0\\ B=25-\left(x-2\right)^2\le25\\ B_{max}=25\Leftrightarrow x=2\)
mik chưa học giá trị lớn nhất là max và giá trị nhỏ nhất là min nên bạn cho mik kí hiệu khác nha
B =2012-| 3x + 3 | - ||x+3| + 2x|
Ta có \(\hept{\begin{cases}\left|3x+3\right|\ge0\\\left|\left|x+3\right|+2x\right|\ge0\end{cases}\forall x}\)
\(\Leftrightarrow\left|3x+3\right|+\left|\left|x+3\right|+2x\right|\ge0\forall x\)
\(\Leftrightarrow-\left|3x+3\right|-\left|\left|x+3\right|+2x\right|\le0\forall x\)
\(\Leftrightarrow2012-\left|3x+3\right|-\left|\left|x+3\right|+2x\right|\le2012\forall x\)
\(\Leftrightarrow B\le2012\forall x\).
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|3x+3\right|=0\\\left|\left|x+3\right|+2x\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x+3=0\\\left|x+3\right|+2x=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x=-3\\\left|x+3\right|=-2x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-1\\\left|-1+3\right|=-2.\left(-1\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-1\\2=2\end{cases}}\)
<=> x = 1
Vậy Max B = 2012 <=> x = 1
y ở đâu v bạn ~~?????
@@ Học tốt
Chiyuki Fujito
Bài giải
Ta có : \(B=2012-\left|3x+3\right|-||x+3|+2x|=2012-\text{( }\left|3x+3\right|+||x+3|+2x|\text{ ) }\)
B đạt GTLN khi \(\text{( }\left|3x+3\right|+||x+3|+2x|\text{ ) }\)đạt GTNN
Đặt \(C=\text{( }\left|3x+3\right|+||x+3|+2x|\text{ ) }\ge|3x+3+\text{ | }x+3\text{ |}+2x|\text{ }=\left|5x+3\text{ + | }x+3\text{ | }\right|\)
Dấu " = " xảy ra khi \(\hept{\begin{cases}x\ge-1\text{ hoặc }x\le-1\\x=-1\end{cases}}\)
Vậy Min C = 0 khi x = - 1
Vậy Max B = 2012 khi x = - 1
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
\(a,A=4+\left|x-\frac{2}{5}\right|\)
Có \(\left|x-\frac{2}{5}\right|\ge0\)
\(\Rightarrow A\ge4+0=4\)
Dấu "=" xảy ra khi \(x-\frac{2}{5}=0\Leftrightarrow x=\frac{2}{5}\)
Vậy Min A = 4 \(\Leftrightarrow x=\frac{2}{5}\)
\(A=-x^2-4y^2+2x-12y-10\)
\(A=-\left(x^2-2x+1\right)-\left(4y^2-12y+9\right)\)
\(A=-\left(x-1\right)^2-\left(2y+3\right)^2\)
Vậy\(A_{max}=0\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{3}{2}\end{matrix}\right.\)
cảm ơn