K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 22 Giá trị của x thoả mãn 2x(x – 3) + 5(x – 3) = 0 là A. 0B.- \(\dfrac{5}{2}\)C. 3 hoặc -\(\dfrac{5}{2}\)câu 23 Giá trị của x thoả mãn (10x + 9).x – (5x – 1)(2x + 3) = 8 là:A. 1,5B. 1,25C. –1,25D. 3Câu 24 Giá trị của x thỏa mãn 2x( x + 3 ) + 2( x + 3 ) = 0 là?A. x = -3 hoặc x =1B. x =3 hoặc x = -1C. x = -3 hoặc x = -1 5D. x =1 hoặc x = 3 Câu25 Giá trị của x thỏa mãn (x + 2)(x2 – 2x + 4) – x(x2 + 2) = 15 là :A. –1,5B. –2,5C. –3,5D. –4,5Câu 26 Giá trị của...
Đọc tiếp

Câu 22 Giá trị của x thoả mãn 2x(x – 3) + 5(x – 3) = 0 là 

A. 0

B.- \(\dfrac{5}{2}\)

C. 3 hoặc -\(\dfrac{5}{2}\)

câu 23 Giá trị của x thoả mãn (10x + 9).x – (5x – 1)(2x + 3) = 8 là:

A. 1,5

B. 1,25

C. –1,25

D. 3

Câu 24 Giá trị của x thỏa mãn 2x( x + 3 ) + 2( x + 3 ) = 0 là?

A. x = -3 hoặc x =1

B. x =3 hoặc x = -1

C. x = -3 hoặc x = -1 5

D. x =1 hoặc x = 3 Câu

25 Giá trị của x thỏa mãn (x + 2)(x2 – 2x + 4) – x(x2 + 2) = 15 là :

A. –1,5

B. –2,5

C. –3,5

D. –4,5

Câu 26 Giá trị của x thoả mãn (x + 3)3 – x(3x+1)2 + (2x + 1)(4x2 – 2x + 1) = 28 là: A. 0

B. -8 \(\dfrac{2}{3}\)

C. 0 hoặc 8\(\dfrac{2}{3}\)

D. 0 hoặc -8\(\dfrac{2}{3}\) 

 Câu 28 Tứ giác ABCD có 𝐴̂ = 1200 ; 𝐵̂ = 800 ; 𝐶̂ = 1000 thì:

A. 𝐷̂ = 600

B. 𝐷̂ = 900

C. 𝐷̂ = 400

D. 𝐷̂ = 1000

Câu 29 Cho ΔABC có I, K lần lượt là trung điểm của AB và AC Biết BC = 20cm. Tacó:

A. IK = 40 cm.

B. IK = 10 cm.

C. IK=5 cm.

D. IK= 15 cm.

3
1 tháng 11 2021

\(22,C\\ 23,C\\ 24,Sai.hết\\ 25,C\\ 28,A\\ 29,B\)

1 tháng 11 2021

22c; 23c; 24c; 25c, 29B

Ko có số nào thỏa mãn

9 tháng 3 2023

Em nhập câu hỏi nhé!

17 tháng 10 2021

\(3x^2-9=0\Rightarrow x^2=3\Rightarrow x=\pm\sqrt{3}\)

Bạn kiểm tra lại đề nhé.

12 tháng 6 2019

đề bài yêu cầu gì v bạn

13 tháng 6 2019

Cái này áp dụng 7 hằng đẳng thức í bạn, bạn giúp mình làm nhanh nha!!!

AH
Akai Haruma
Giáo viên
31 tháng 3 2018

Bài 3:

Áp dụng BĐT Cauchy cho các số dương ta có:

\(\frac{1}{x}+\frac{x}{4}\geq 2\sqrt{\frac{1}{4}}=1\)

\(\frac{1}{y}+\frac{y}{4}\geq 2\sqrt{\frac{1}{4}}=1\)

\(\frac{1}{z}+\frac{z}{4}\geq 2\sqrt{\frac{1}{4}}=1\)

Cộng theo vế các BĐT vừa thu được ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{x+y+z}{4}\geq 3\)

\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq 3-\frac{x+y+z}{4}\geq 3-\frac{6}{4}\) (do \(x+y+z\leq 6\) )

\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{3}{2}\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=2\)

Bài 4:

Áp dụng BĐT Cauchy cho 3 số dương:

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\geq 3\sqrt[3]{\frac{x}{y}.\frac{y}{z}.\frac{z}{x}}=3\sqrt[3]{1}=3\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z\)

22 tháng 6 2017

Ta có :

a3 + b3 + c3 = 3abc

=> a3 + b3 + c3 - 3abc = 0

Đưa về hằng đẳng thức phụ : a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)

Vô link này sẽ có thêm vài hệ thức của hằng nữa : Bảy hằng đẳng thức đáng nhớ – Wikipedia tiếng Việt

=> a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca) = 0

=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\left(2\right)\end{cases}}\)

Từ (2) ta có :

a2 + b2 + c2 - ab - bc - ca = 0

<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0

<=> (a2 - 2ab + b2) + (b2 - 2ab + c2) + (c2 - 2ca + a2) = 0

<=> (a - b)2 + (b - c)2 + (c - a)2 = 0

<=> \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c\)