Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{4x-11}{x-3}\)= \(\frac{4\left(x-3\right)+1}{x-3}\)= 4 + \(\frac{1}{x-3}\)
Để A có giá trị nhỏ nhất thì \(\frac{1}{x-3}\)có giá trị nhỏ nhất
Để \(\frac{1}{x-3}\)có giá trị nhỏ nhất thì x-3 có giá trị lớn nhất
ta có:\(A=\frac{4x-11}{x-3}=\frac{4\left(x-3\right)+1}{x-3}=4+\frac{1}{x-3}\)
để A có giá trị nhỏ nhất thì \(\frac{1}{x-3}\)có giá trị nhỏ nhất
\(\Leftrightarrow\)\(x-3\)có giá trị lớn nhất
Ta có |x-10| > hoặc = 0
=> |x-10|+ 2021 > hoặc = 2021
Dấu "=" xảy ra khi x-10 = 0
=> x-10 = 0
=> x=10
Giá trị nhỏ nhất của biểu thức A=|x-10|+2021 là = 2021 khi x =10
Ta có : |x-10| > 0 => |x-10| + 2021 > 0 + 2021
A > 2021
Dấu"=" xảy ra khi x - 10 = 0 => x =10
Vậy Amin=2021 khi x = 10
x=13;-13
giá trị nhỏ nhất của A=13