Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{x^2-2x+1989}{x^2}\)
\(\Leftrightarrow Px^2=x^2-2x+1989\)
\(\Leftrightarrow x^2\left(1-P\right)-2x+1989=0\)
\(\Delta=4-4\left(1-P\right)1989\ge0\)
\(\Leftrightarrow P\ge\frac{1988}{1989}\)có GTNN là \(\frac{1988}{1989}\)
Dấu "=" xảy ra \(\Leftrightarrow x=1989\)
Vậy \(P_{min}=\frac{1988}{1989}\) tại x = 1989
Ta có: \(3\left(2x+9\right)^2\ge0\forall x\)
\(\Rightarrow3\left(2x+9\right)^2-1\ge-1\forall x\)
Dấu = xảy ra khi: \(3\left(2x+9\right)^2=0\Rightarrow x=-\frac{9}{2}\)
Vậy : GTNN của biểu thức là -1 tại x = -9/2
=.= hok tốt!!
\(A=\)\(36x^2\)\(+\)\(24x\)\(+7\)
\(\Leftrightarrow\)\(A=36x^2+24x+4+3\)
\(\Leftrightarrow\)\(A=\left(6x+2\right)^2+3\)
Vì \(\left(6x+2\right)^2\)\(\ge0\) nên \(A\ge3\)
\(\Rightarrow GTNN\)của \(A\)là \(3\) khi \(\left(6x+2\right)^2=0.\)
\(\Leftrightarrow\)\(x=-\frac{1}{3}\)
Vậy GTNN của \(A\)là \(3\)khi \(x=-\frac{1}{3}\)
\(Q=3xy\left(x+3y\right)-2xy\left(x+4y\right)-x^2\left(y-1\right)+y^2\left(1-x\right)+36\)\(\Leftrightarrow Q=3x^2y+9xy^2-2x^2y-8xy^2-x^2y+x^2+y^2-xy^2+36\)\(\Leftrightarrow Q=\left(3x^2y-2x^2y-x^2y\right)+\left(9xy^2-8xy^2-xy^2\right)+x^2+y^2+36\)\(\Leftrightarrow Q=x^2+y^2+36\ge36\forall x;y\)
Dấu " = " xảy ra
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy Min Q là : \(36\Leftrightarrow x=y=0\)
Ta có: \(3\left(2x+9\right)^2\ge0\) với \(x\in R\) , dấu bằng xảy ra \(\Leftrightarrow x=-\frac{9}{2}\)
=> \(3\left(2x+9\right)^2-1\ge-1\) với \(x\in R\) , dấu bằng xảy ra \(\Leftrightarrow x=-\frac{9}{2}\)
Vậy GTNN của \(3\left(2x+9\right)^2-1\) là -1 với \(x=-\frac{9}{2}\)