Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A = 5 + 5 2 + 5 3 + . . . + 5 8
= 5(1+5)+ 5 2 (1+5)+ 5 3 (1+5)+...+ 5 7 (1+5)
= 30+5.30+ 5 2 .30+...+ 5 6 .30
= 30.(1+5+ 5 2 +..+ 5 6 )
Vậy A là bội của 30
b, B = 3 + 3 3 + 3 5 + 3 7 + . . . + 3 29
= 3 1 + 3 2 + 3 4 + 3 7 1 + 3 2 + 3 4 +...+ 3 27 1 + 3 2 + 3 4
= 273+273. 3 6 +...+ 3 26 .273
= 273.(1+ 3 6 +...+ 3 26 )
Vậy B là bội của 273
Bài giải
Ta có : \(A=\left(n+3\right)\text{ : }n=1+\frac{3}{n}\)
a, A có giá trị lớn nhất khi \(\frac{3}{n}\)đạt GTLN \(\Rightarrow\text{ }n\)đạt GTNN
Có 2 trường hợp : n đạt giá trị âm nhỏ nhất, n đạt giá trị dương nhỏ nhất
* Với n đạt giá trị âm nhỏ nhất \(\Rightarrow\text{ A âm}\)
* Với n đạt giá trị dương nhỏ nhất \(\Rightarrow\text{ A dương}\)
Vì \(A\text{ dương }>A\text{ âm nên A đạt GTLN khi n = 1 }\Rightarrow\text{ }A=4\)
b, Biểu thức \(A=1+\frac{3}{n}\) có giá trị là số tự nhiên khi \(3\text{ }⋮\text{ }n\text{ }\Rightarrow\text{ }n\inƯ\left(3\right)=\left\{\pm1\text{ ; }\pm3\right\}\)
Giải:
P có giá trị số lớn nhất khi (x - 6) có giá trị bé nhất.
Gía trị bé nhất của (x - 6) là : x - 6 = 1
x = 1 + 6
x = 7
Khi đó giá trị số của biểu thức P là :
P = 2004 + 540 : (7 - 6)
= 2004 + 540
= 2544
a) Ta có: \(\left(2x-4\right)^4\ge0\forall x\)
\(\Leftrightarrow\left(2x-4\right)^4+5\ge5\forall x\)
Dấu '=' xảy ra khi 2x-4=0
\(\Leftrightarrow2x=4\)
hay x=2
Vậy: Giá trị nhỏ nhất của biểu thức \(M=\left(2x-4\right)^2+5\) là 5 khi x=2
b) Ta có: \(\left|x+2\right|\ge0\forall x\)
\(\Leftrightarrow-\left|x+2\right|\le0\forall x\)
\(\Leftrightarrow\left|x+2\right|+10\le10\forall x\)
Dấu '=' xảy ra khi x+2=0
hay x=-2
Vậy: Giá trị lớn nhất của biểu thức \(N=10-\left|x+2\right|\) là 10 khi x=-2
Để biểu thức A đạt giá trị nguyên
<=> 3 chia hết cho (n-2)
Vì 3 chia hết cho n-2 => (n-2) thuộcƯ(3)={-3;-1;1;3}
Ta có bảng sau:
n-2 | -3 | -1 | 1 | 3 |
n | -1 | 1 | 3 | 5 |
Vậy để biểu thức A đạt giá trị nguyên <=> n thuộc {-1;1;3;5}
\(\frac{1^{2014}+2014^0}{\left(3^2-2^3\right)^{10}}\)
\(=\frac{1+1}{\left(9-8\right)^{10}}\)
\(=\frac{2}{1^{10}}\)
\(=\frac{2}{1}\)
\(=2\)
\(\frac{1^{2014}+2014^0}{\left(3^2-2^3\right)^{10}}\)
\(=\frac{1+1}{1}=2\)