K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2017

Đặt \(A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{20}\)(1)

\(\Rightarrow2A=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{19}\)(2)

Lấy (2) trừ đi (1) ta có :

\(\Rightarrow2A-A=1-\left(\frac{1}{2}\right)^{20}\)

\(\Rightarrow A=1-\left(\frac{1}{2}\right)^{20}\)

21 tháng 11 2016

\(\frac{1}{2}S=\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{21}\)

\(\Rightarrow\left(\frac{1}{2}S\right)-S=\left(\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{21}\right)-\left(\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{20}\right)\)

\(\Rightarrow-\frac{1}{2}S=\left(\frac{1}{2}\right)^{21}-\left(\frac{1}{2}\right)\)

\(\Rightarrow S=\frac{\left(\left(\frac{1}{2}\right)^{21}-\frac{1}{2}\right)}{-\frac{1}{2}}\)

8 tháng 2 2017

31/29

8 tháng 2 2017

\(=\frac{-\frac{1}{8}-\frac{27}{64}.4}{-2+\frac{9}{16}-\frac{3}{8}}\)

\(=\frac{-\frac{1}{8}-\frac{27}{16.4}.4}{-2+\frac{9-6}{16}}\)

\(=\frac{-\frac{1}{8}-\frac{27}{16}}{-2+\frac{3}{16}}\)

\(=\frac{-\left(\frac{2+27}{16}\right)}{\frac{-32+3}{16}}\)

\(=\frac{-\frac{29}{16}}{\frac{-29}{16}}\)

\(=1\)

26 tháng 3 2017

\(A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{2017^2}\right)\)

\(=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}...\frac{2016.2018}{2017^2}\)

\(=\frac{2.3^2.4^2.5^2...2016^2.2017.2018}{2^2.3^2.4^2.5^2...2017^2}\)

\(=\frac{2018}{2.2017}=\frac{1009}{2017}\)

3 tháng 2 2017

lơp 6  ko bt

16 tháng 7 2016

\(P=\left(-0,5-\frac{3}{5}\right):\left(-3\right)+\frac{1}{3}-\left(-\frac{1}{6}\right):\left(-2\right)\)

\(P=\left(-1,1\right):\left(-3\right)+\frac{1}{3}+\frac{1}{6}:\left(-2\right)\)

\(P=\frac{11}{30}+\frac{1}{3}+\left(-\frac{1}{12}\right)\)

\(P=\frac{37}{60}\)

\(Q=\left(\frac{2}{25}-1,008\right):\frac{4}{7}:\left[\left(3\frac{1}{4}-6\frac{5}{9}\right).2\frac{2}{17}\right]\)

\(Q=\left(-0,928\right):\frac{4}{7}:\left[\left(-\frac{119}{36}\right).2\frac{2}{17}\right]\)

\(Q=\left(-1,624\right):\left(-\frac{245}{36}\right)\)

\(Q=\frac{1044}{4375}\)

\(P=\left(\dfrac{-1}{2}-\dfrac{3}{5}\right):\left(-3\right)+\dfrac{1}{3}-\dfrac{1}{6}:2\)

\(=\left(\dfrac{1}{2}+\dfrac{3}{5}\right):3+\dfrac{1}{3}-\dfrac{1}{12}\)

\(=\dfrac{11}{10}\cdot\dfrac{1}{3}+\dfrac{1}{4}\)

\(=\dfrac{11}{30}+\dfrac{1}{4}=\dfrac{22}{60}+\dfrac{15}{60}=\dfrac{37}{60}\)

\(Q=\left(\dfrac{2}{25}-\dfrac{126}{125}\right)\cdot\dfrac{7}{4}:\left[\dfrac{-119}{36}\cdot\dfrac{36}{17}\right]\)

\(=\dfrac{-116}{125}\cdot\dfrac{7}{4}:\left(-7\right)\)

\(=\dfrac{116}{125}\cdot\dfrac{7}{4}\cdot\dfrac{1}{7}=\dfrac{29}{125}\)

4 tháng 2 2018

Đặt  \(A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+...+\left(\frac{1}{2}\right)^{20}\)

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{20}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{19}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{19}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{20}}\right)\)

\(A=1-\frac{1}{2^{20}}\)

\(A=\frac{2^{20}}{2^{20}}-\frac{1}{2^{20}}\)

\(A=\frac{2^{20}-1}{2^{20}}\)

Vậy chọn câu a)