Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1^2-2^2+3^2-4^2+...+2015^2-2016^2\)
\(=\left(1^2-2^2\right)+\left(3^2-4^2\right)+...+\left(2015^2-2016^2\right)\)
\(=-3+\left(-7\right)+\left(-11\right)+...+\left(-4027\right)+\left(-4031\right)\)
Số các số hạng của dãy là:
\(\frac{\left(-3\right)-\left(-4031\right)}{4}+1=1008\)(số)
Tổng trên là:
\(\frac{1008.\left[\left(-3\right)+\left(-4031\right)\right]}{2}=-2033136\)
Ta co : x^4 > 0 ; x^2 > 0 => 2015*x^2 > 0
<=> x^4 + 2015*x^2 + 3*10^2 > 300
Đau "=" xảy ra <=> x^4=0;x^2=0 <=> x=0
Vậy Min A = 300 <=> x = 0
a)
\(\hept{\begin{cases}\left(x^2-9x\right)^2\ge0\\!y-2!\ge0\end{cases}\Rightarrow GTNN=10}\) đẳng thức đạt được khi y=2 và \(\orbr{\begin{cases}x=0\\x=9\end{cases}}\)
b)
cách 1: ghép tạo số hạng (x-2015)
E=x^9(x-2015)+x^8(x-2015)+....+x(x-2015)+x-1=2014 tại x=2015
hoặc
x^10-1=(x-1)(x^9+x^8+..+1) cái này cơ bản
-2014x^9-2014x-2014+2014 thêm 2014 bớt 2014
(x^9+x^8+..+1)(x-1-2014)+2014=(x-2015)(x^9+..+1)+2014=2014
La 0 vi tu co ket qua la 0