Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$2N-1$=2.1.3.5...2007-1=2.1.3.5...2007-3+2$ chia $3$ dư $2$. Mà một số chính phương khi chia $3$ chỉ dư $0$ hoặc $1$ nên $2N-1$ không thể là số chính phương.
-------------------------
Ta thấy $N$ là số lẻ nên \(2N\) là số chia hết cho $2$ nhưng không chia hết cho $4$. Do đó $2N$ không thể là số chính phương.
-------------
Ở trên ta đã cm $2N$ chia hết cho $2$ nhưng không chia hết cho $4$. Do đó $2N$ có dạng $4k+2$, kéo theo $2N+1$ có dạng $4k+3$.
Một số chính phương khi chia $4$ chỉ có dư $0$ hoặc $1$ chứ không thể là $3$. Do đó $2N+1$ cũng không phải là số chính phương.
Ta có đpcm.
dễ mà chứng minh nó chia hết cho 2 nhưng không chia hét cho4
đề có gì sai không bạn. Nếu n = 4 thì n - n + 2n + 2n = 16 vẫn là số chính phương mà
Bạn xem lại đề đi nhé
ta có n^4+2n^3+2n^2+2n+1=(n^2+n+1)^2-n^2=(n^2+1)(n+1)^2=t^2khi và chỉ khi n^2+1 là số chính phương
có n^2+1=a^2khi và chỉ khi n=0