Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a+b) :2 là hợp số vì khi 2 số lẻ cộng với nhau đáp số là số chẵn mà số chẵn thì chia hết cho 2
Ví dụ : (1+3):2= 4:2 =2
Suy ra (a+b):2
xin lỗi hồ duy hiếu nhưng mình nghĩ lý luận và cách giải của bạn sai đây là 2 số nguyên tố lẻ liên tiếp chứ ko phải 2 số lẻ liên tiếp
Vì a và b là 2 số nguyên tố lẻ liên tiếp và b > a nên :
=> a + 2 = b
=> ( a + b ) : 2
= ( a + a + 2 ) : 2
= ( a x 2 + 2 ) : 2
= a x 2 : 2 + 2 : 2
= a + 1
Mà a là số lẻ nên a + 1 là số chẵn
Vậy ( a + b ) : 2 là hợp số ( đpcm )
gọi 2.n +1 là một số lẻ bất kì (n thuộc N )
suy ra 2n +1 và 2n+3 là 2 số lẻ liên tiếp
gọi d thuoocj vào ƯC(2n+1,2n+3 ) (d thuộc N*)
suy ra 2n+1 và 2n+3 chia hết cho d
suy ra [(2n+3) - (2n+1)] chia hết cho d
suy ra 2 chia hết cho d
suy ra d thuộc Ư(2) ={1;2}
suy ra d khác 2 (vì 2n+1 và 2n+3 là các số lẻ )
suy ra d =1
suy ra ƯC (2n+1 ,2n+3 ) =1
suy ra UWCLN (3n+1 , 2n+3) =1
suy ra 2n +1 và 2n+3 nguyên tố cùng nhau
vậy 2 số lẻ liên tiếp luôn nguyên tố cùng nhau .
a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1 ⋮ d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau
b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2 ⋮ d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm
c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1 ⋮ d => d = 1 => dpcm
Câu a) thôi, câu b) chị chưa nghĩ được!
+) 2 số lẻ liên tiếp có dạng là 2n + 1 và 2n + 3 ( n thuộc N )
+) Đặt d thuộc ƯC ( 2n + 1; 2n + 3 ) ( d thuộc N* )
=> 2n + 1 chia hết cho d
2n + 3 chia hết cho d
Vậy ( 2n + 3 ) - ( 2n + 1 ) chia hết cho d
<=> 2 chia hết cho d
=> d thuộc Ư ( 2 )
=> d thuộc {1; 2}
Nhưng d là số lẻ => d ≠ 2 => d = 1
Vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau.
anh mình giải hộ đấy:
vì a và b là số lẻ
=> a+b là số chẵn
=> a+b chia hết cho 2
làm xong nhớ thanks nha^-^