Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hong Ra On chuyên gì thế hả sao gọi mình là sao
\(\sqrt{x+2-3\sqrt{2x-5}}+\sqrt{x-2+\sqrt{2x-5}}=2\sqrt{2}\)
\(\left\{{}\begin{matrix}x\ge\dfrac{5}{2};y=\sqrt{2x-5};y\ge0\\\sqrt{\dfrac{\left(y-3\right)^2}{2}}+\sqrt{\dfrac{\left(y+1\right)^2}{2}}=2\sqrt{2}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x\ge\dfrac{5}{2};y=\sqrt{2x-5};y\ge0\\\left|\dfrac{\left(y-3\right)}{\sqrt{2}}\right|+\left|\dfrac{\left(y+1\right)}{\sqrt{2}}\right|=\left|\dfrac{4}{\sqrt{2}}\right|=2\sqrt{2}=VP\end{matrix}\right.\)đẳng thức khi
\(7\ge x\ge\dfrac{5}{2}\)
kết luận
nghiệm của pt là : \(7\ge x\ge\dfrac{5}{2}\)
a)\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)
\(\Leftrightarrow\left|1-x\right|+\left|x-2\right|=3\)
Có: \(VT=\left|1-x\right|+\left|x-2\right|\)
\(\ge\left|1-x+x-2\right|=3=VP\)
Khi \(x=0;x=3\)
b)\(\sqrt{x^2-10x+25}=3-19x\)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=3-19x\)
\(\Leftrightarrow\left|x-5\right|=3-19x\)
\(\Leftrightarrow x^2-10x+25=361x^2-114x+9\)
\(\Leftrightarrow-360x^2+104x+16=0\)
\(\Leftrightarrow-5\left(5x-2\right)\left(9x+1\right)=0\)
\(\Rightarrow x=\frac{2}{5};x=-\frac{1}{9}\)
c)\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)
\(\Leftrightarrow\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+8\sqrt{2x-3}+16}=5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}+4\right)^2}=5\)
\(\Leftrightarrow\left|\sqrt{2x-3}+1\right|+\left|\sqrt{2x-3}+4\right|=5\)
\(\Leftrightarrow2\sqrt{2x-3}+5=5\)\(\Leftrightarrow\sqrt{2x-3}=0\Leftrightarrow x=\frac{3}{2}\)
\(\sqrt{x^2-2x+1}\) + \(\sqrt{x^2-4x+4}\) = 3
<=> \(\sqrt{\left(x-1\right)^2}\)+ \(\sqrt{\left(x-2\right)^2}\)= 3
<=> \(\left|x-1\right|\)+\(\left|x-2\right|\)=3
<=> x - 1 + x - 2 = 3
<=> 2x - 3 = 3
<=> x = \(\dfrac{6}{2}\)= 3
b ,
\(\sqrt{x^2-10x+25}=3-19x\)
<=>\(\sqrt{\left(x-5\right)^2}=3-19x\)
<=> \(\left|x-5\right|=3-19x\)
<=> \(x-5=3-19x\)
\(\Leftrightarrow x+19x=3+5\)
\(\Leftrightarrow20x=8\Leftrightarrow x=\dfrac{8}{20}=\dfrac{2}{5}\)
Đặt \(2x-5=t^2\)ta có \(x=\frac{t^2+5}{2}\)thay giá trị của x vào phương trình đã cho được:
\(\sqrt{\frac{t^2+5}{2}-2+t}+\sqrt{\frac{t^2+5}{2}+2+3t}=7\sqrt{2}\)
hay \(\sqrt{t^2+5-2+2t}+\sqrt{t^2+5+4+6t}=14\)
\(\sqrt{t^2+2t+1}+\sqrt{t^2+6t+9}=14\)
\(\sqrt{\left(t+1\right)^2}+\sqrt{\left(t+3\right)^2}=14\)
\(t+1+t+3=14\)
\(2t+4=14\)
2t=10
t=5
Từ đó \(x=\frac{25+5}{2}=15\)
m=\(\sqrt{2x-5}\)=>\(x=\dfrac{m^2+5}{2}\)
\(\sqrt{\dfrac{m^2+5}{2}+2-3m}+\sqrt{\dfrac{m^2+5}{2}-2+m}=2\sqrt{2}< =>\sqrt{\dfrac{m^2+5+4-6m}{2}}+\sqrt{\dfrac{m^2+5-4+2m}{2}}=2\sqrt{2}< =>\left(m+1\right)\left(\dfrac{\sqrt{8-8m}+1}{\sqrt{2}}\right)=2\sqrt{2}< =>\left(m+1\right)\left(\sqrt{8-8m}+1\right)=2\)bình 2 vế lên
"bình 2 vế lên" dòng này cuối cùng không biết thằng nào viết cái web này mà gán biểu thức thành ra thế
\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)(ĐK: \(\sqrt{2x-5}\ge0\Leftrightarrow x\ge\frac{5}{2}\)
\(\Leftrightarrow\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)
\(\Leftrightarrow\sqrt{\left(2x-5\right)+2\sqrt{2x-5}.3+9}+\sqrt{\left(2x-5\right)-2\sqrt{2x-5}+1}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|=4\)
\(\Leftrightarrow\sqrt{2x-5}+3+\left|\sqrt{2x-5}-1\right|=4\)(vì \(\sqrt{2x-5}\ge0\) nên \(\sqrt{2x-5}+3\ge3>0\))
-TH: \(\sqrt{2x-5}-1\ge0\Leftrightarrow\sqrt{2x-5}\ge1\Leftrightarrow2x-5\ge1\Leftrightarrow x\ge3\) thì ta được phương trình:
\(\sqrt{2x-5}+3+\sqrt{2x-5}-1=4\)
\(\Leftrightarrow2\sqrt{2x-5}=2\)
\(\Leftrightarrow\sqrt{2x-5}=1\)
\(\Leftrightarrow2x-5=1\)
\(\Leftrightarrow x=3\left(chọn\right)\)
-TH: \(\sqrt{2x-5}-1< 0\Leftrightarrow x< 3\) thì ta được phương trình:
\(\sqrt{2x-5}+3+1-\sqrt{2x-5}=4\)
\(\Leftrightarrow4=4\)(luôn đúng với mọi \(\frac{5}{2}\le x< 3\))
Vậy nghiệm của phương trình là \(\frac{5}{2}\le x\le3\)