Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\frac{2}{3}x-\frac{4}{9}\right)\left(\frac{1}{2}-\frac{3}{7}:x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\frac{2}{3}x-\frac{4}{9}=0\\\frac{1}{2}-\frac{3}{7}:x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{6}{7}\end{cases}}\)
Vậy \(x\in\left\{\frac{2}{3};\frac{6}{7}\right\}\)
b)
\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0\)
\(\frac{x+2}{327}+1+\frac{x+3}{326}+1+\frac{x+4}{325}+1+\frac{x+5}{324}+1+\frac{x+329}{5}+4=4\)
\(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)
\(\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)
Mà \(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\ne0\)
\(\Rightarrow x+329=0\)
\(\Rightarrow x=-329\)
Vậy \(x=-329\)
Để M là số nguyên
Thì (x2–5) chia hết cho (x2–2)
==>(x2–2–3) chia hết cho (x2–2)
==>[(x2–2)—3] chia hết cho (x2–2)
Vì (x2–2) chia hết cho (x2–2)
Nên 3 chia hết cho (x2–2)
==> (x2–2)€ Ư(3)
==> (x2–2) €{1;-1;3;-3}
TH1: x2–2=1
x2=1+2
x2=3
==> ko tìm được giá trị của x
TH2: x2–2=-1
x2=-1+2
x2=1
12=1
==>x=1
TH3: x2–2=3
x2=3+2
x2=5
==> không tìm được giá trị của x
TH4: x2–2=-3
x2=-3+2
x2=-1
(-1)2=1
==> x=-1
Vậy x € {1;—1)
a, Đặt A=3x+7x−1.
Ta có: A=3x+7x−1=3x−3+10x−1=3x−3x−1+10x−1=3+10x−1
Để A∈Z thì 10x−1∈Z⇒10⋮x−1⇔x−1∈U(10)={±1;±2;±5;±10}
Ta có bảng sau:
x−1 | 1 | −1 | 2 | −2 | 5 | −5 | 10 | −10 |
x | 2 | 0 | 3 | −1 | 6 | −4 | 11 | −9 |
Vậy, với x∈{−9;−4;−1;0;2;3;6;11}thì A=3x+7x−1∈Z.
Đúng 4 Bình luận 2 Câu trả lời được H lựa chọn Báo cáo sai phạm
Nguyễn Huy Tú4 tháng 5 2017 lúc 19:45
Câu 3:
a, Ta có: −(x+1)2008≤0
⇒P=2010−(x+1)2008≤2010
Dấu " = " khi (x+1)2008=0⇒x+1=0⇒x=−1
Vậy MAXP=2010 khi x = -1
b, Ta có: −|3−x|≤0
⇒Q=1010−|3−x|≤1010
Dấu " = " khi |3−x|=0⇒x=3
Vậy MAXQ=1010 khi x = 3
c, Vì (x−3)2+1≥0 nên để C lớn nhất thì (x−3)2+1 nhỏ nhất
Ta có: (x−3)2≥0⇒(x−3)2+1≥1
⇒C=5(x−3)2+1≤51=5
Dấu " = " khi (x−3)2=0⇒x=3
Vậy MAXC=5 khi x = 3
d, Do |x−2|+2≥0 nên để D lớn nhất thì |x−2|+2 nhỏ nhất
Ta có: |x−2|≥0⇒|x−2|+2≥2
⇒D=4|x−2|+2≤42=2
Dấu " = " khi |x−2|=0⇒x=2
Vậy MAXD=2 khi x = 2
Đúng 3 Bình luận Câu trả lời được H lựa chọn Báo cáo sai phạm
(2/3x-4/9).(1/2+ -3/7x)=0
- => 2/3x-4/9=0=>2/3x=4/9=>x=2/3
- =>1/2+ -3/7x=0=>-3/7x=-1/2=>x=7/6
tk cho mk thật nhiều nhé
1.
a) \(\frac{11}{2}-\frac{2}{3}:\left|2x+-\frac{3}{2}\right|=3\)
\(-\frac{2}{3}:\left|2x+-\frac{3}{2}\right|=3-\frac{11}{2}\)
\(-\frac{2}{3}:\left|2x+-\frac{3}{2}\right|=-\frac{5}{2}\)
\(\left|2x+-\frac{3}{2}\right|=-\frac{2}{3}:\left(-\frac{5}{2}\right)\)
\(\left|2x+-\frac{3}{2}\right|=\frac{4}{15}\)
\(\Rightarrow\left|2x+-\frac{3}{2}\right|\in\text{{}\frac{4}{15};-\frac{4}{15}\)}
Nếu, \(2x+\left(-\frac{3}{2}\right)=\frac{4}{15}\)
\(2x=\frac{53}{30}\)
\(x=\frac{53}{60}\)
Nếu, \(2x+\left(-\frac{3}{2}\right)=-\frac{4}{15}\)
\(2x=\frac{37}{30}\)
\(x=\frac{37}{60}\)
Vậy \(x\in\text{{}\frac{53}{60};\frac{37}{60}\)}
b) \(\left|\frac{2}{7}x-\frac{1}{5}\right|-\left|-x+\frac{4}{9}\right|=0\)
\(\left|\frac{2}{7}x-\frac{1}{5}\right|=\left|-x+\frac{4}{9}\right|\)
\(\Rightarrow\left|\frac{2}{7}x-\frac{1}{5}\right|\in\text{{}-x+\frac{4}{9};-\left(x+\frac{4}{9}\right)\)}
Nếu, \(\frac{2}{7}x-\frac{1}{5}=-x+\frac{4}{9}\)
\(x=\frac{203}{405}\)
Nếu, \(\frac{2}{7}x-\frac{1}{5}=-\left(-x+\frac{4}{9}\right)\)
\(\frac{2}{7}x-\frac{1}{5}=x-\frac{4}{9}\)
\(\frac{2}{7}x-x=\frac{1}{5}-\frac{4}{9}\)
\(-\frac{5}{7}x=-\frac{11}{45}\)
\(x=\frac{77}{225}\)
Vậy \(x\in\text{{}\frac{203}{405};\frac{77}{225}\)}
\(\frac{x+9}{x+5}=\frac{2}{7}\)
=>7(x+9)=2(x+5)
=>7x+63=2x+10
=>63-10=2x-7x
=>53=-5x
=>x=-53/5