K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2020

Đề đúng phải là:

\(\frac{x+1}{2014}+\frac{x+2}{2013}+\frac{x+3}{2012}=\frac{x+10}{2005}+\frac{x+11}{2004}+\frac{x+12}{2003}\)

Cộng mỗi phân thức thêm 1, quy đồng rồi chuyển sang 1 vế ta được:

\(\frac{x+2015}{2014}+\frac{x+2015}{2013}+\frac{x+2015}{2012}-\frac{x+2015}{2005}-\frac{x+2015}{2004}-\frac{x+2015}{2003}=0\)

\(\Leftrightarrow\left(x+2015\right)\left(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)

Mà BT tích sau luôn nhỏ hơn 0

=> x+2015=0 => x = -2015

28 tháng 9 2020

\(\frac{x+1}{2014}+\frac{x+2}{2013}+\frac{x+3}{2012}=\frac{x+10}{2005}+\frac{x+11}{2004}+\frac{x+12}{2003}\)( như này đúng không ? :)) )

<=> \(\left(\frac{x+1}{2014}+1\right)+\left(\frac{x+2}{2013}+1\right)+\left(\frac{x+3}{2012}+1\right)=\left(\frac{x+10}{2005}+1\right)+\left(\frac{x+11}{2004}+1\right)+\left(\frac{x+12}{2003}+1\right)\)

<=> \(\frac{x+1+2014}{2014}+\frac{x+2+2013}{2013}+\frac{x+3+2012}{2012}=\frac{x+10+2005}{2005}+\frac{x+11+2004}{2004}+\frac{x+12+2003}{2003}\)

<=> \(\frac{x+2015}{2014}+\frac{x+2015}{2013}+\frac{x+2015}{2012}=\frac{x+2015}{2005}+\frac{x+2015}{2004}+\frac{x+12}{2003}\)

<=> \(\frac{x+2015}{2014}+\frac{x+2015}{2013}+\frac{x+2015}{2012}-\frac{x+2015}{2005}-\frac{x+2015}{2004}-\frac{x+12}{2003}=0\)

<=> \(\left(x+2015\right)\left(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)

Vì \(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\ne0\)

=> x + 2015 = 0

=> x = -2015

5 tháng 12 2015

 

a) (x-5)x+2015 - (x-5)x+2014  =0

  (x-5)x+2014(x-5 -1) =0

+ x -5 =0 => x =5

+ x -6 =0 => x =6

Vậy x = 5 hoặc x =6

13 tháng 11 2016

Câu a: x=-1

b

16 tháng 2 2017

a) x=-1

b) x=-2016

k mik nhé, ủng hộ nha:)

12 tháng 11 2016

ko bằng cái j àk

22 tháng 8 2017

c) 22/5 + 51/9 + 11/4 + 3/5 + 1/3 + 1/4
= 22/5 +3/5 +51/9 + 1/3 +11/4+1/4
= (22/5 +3/5) +(51/9 + 3/9) +(11/4+1/4)
= 25/5 +54/9 +12/4
= 5 +6 +3
= 14
d) (1/6 + 1/10 + 1/15) : (1/6 + 1/10 - 1/15) 
= (5/30 + 3/30 +2/30 ) :(5/30 +3/30 -2/30)
= 10/30 : 6/30
= 1/3 : 1/5
= 5/3

11 tháng 12 2017

\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)x=\frac{2013}{1}+\frac{2012}{2}+...+\frac{2}{2012}+\frac{1}{2013}\)

\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)x=\left(\frac{2012}{2}+1\right)+...+\left(\frac{2}{2012}+1\right)+\left(\frac{1}{2013}+1\right)+1\)

\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)x=\frac{2014}{2}+...+\frac{2014}{2012}+\frac{2014}{2013}+\frac{2014}{2014}\)

\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)x=2014.\left(\frac{1}{2}+...+\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}\right)\)

\(x=\frac{2014.\left(\frac{1}{2}+...+\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}\)

\(x=2014\)

15 tháng 4 2017

Ta có: \(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)x=2013+\frac{2012}{2}+...+\frac{2}{2012}+\frac{1}{2013}\)

\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)x=1+\left(1+\frac{2012}{2}\right)+...+\left(1+\frac{2}{2012}\right)+\left(1+\frac{1}{2013}\right)\)

\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)x=\frac{2014}{2014}+\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2012}+\frac{2014}{2013}\)

\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)x=2014.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}\right)\)

\(\Rightarrow x=2014\)

Lưu ý: số 2013 ở dòng T2 được tách ra làm 2013 số 1

6 tháng 7 2018

a, ĐK: \(x+1\ge0\Leftrightarrow x\ge-1\)

Ta có: |3-2x|=x+1

=>\(\orbr{\begin{cases}3-2x=x+1\\3-2x=-x-1\end{cases}\Rightarrow\orbr{\begin{cases}x+2x=3-1\\-x+2x=3+1\end{cases}\Rightarrow}\orbr{\begin{cases}3x=2\\x=4\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{2}{3}\left(tmđk\right)\\x=4\left(tmđk\right)\end{cases}}}\)

Vậy x=2/3 hoặc x=4

b, Xét VP ta có: \(\frac{2013}{1}+\frac{2012}{2}+...+\frac{2}{2012}+\frac{1}{2013}=2013+\frac{2012}{2}+...+\frac{2}{2012}+\frac{1}{2013}\)

\(=1+\left(1+\frac{2012}{2}\right)+\left(1+\frac{2011}{3}\right)+...+\left(1+\frac{2}{2012}\right)+\left(1+\frac{1}{2013}\right)\)

\(=\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2012}+\frac{2014}{2013}+1\)

\(=\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}=2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)\)

=>\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)x=2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)\)

=>\(x=\frac{2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}=2014\)

Vậy x=2014