Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}=\frac{\left(x+y+z\right)-\left(4+6+8\right)}{2+3+4}=\frac{27-18}{9}=1\)
\(\Rightarrow x-4=2\Rightarrow x=6\)
\(\Rightarrow y-6=3\Rightarrow y=9\)
\(\Rightarrow z-8=4\Rightarrow z=12\)
Ta có : \(\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}\) và \(x+y+z=27\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}=\frac{x+y+z-18}{2+3+4}=1\)
\(\Leftrightarrow\frac{x-4}{2}=1\Rightarrow x=6\)
\(\Leftrightarrow\frac{y-6}{3}=1\Rightarrow y=9\)
\(\Leftrightarrow\frac{z-8}{4}=1\Rightarrow z=12\)
Vậy x = 6 ; y = 9 ; z = 12
\(\frac{x}{2}-2=\frac{y}{3}-2=\frac{z}{4}-2\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{27}{9}=3\)
\(\Rightarrow x=6,y=9,z=12\)
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có:
\(\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}=\frac{x+y+z-18}{2+3+4}=1\)
Ta có:\(\frac{x-4}{2}=1\Rightarrow x=6\)
\(\frac{y-6}{3}=1\Rightarrow y=9\)
\(\frac{z-8}{4}=1\Rightarrow z=12\)
b) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\) = \(\dfrac{x+y+z}{2+3+5}=\dfrac{-90}{10}=-9\)
\(\dfrac{x}{2}=-9\) => x= -18
\(\dfrac{y}{3}=-9\) => y = -27
\(\dfrac{z}{5}=-9\) => z = -45
a) \(4x=5y\) <=> \(x=\dfrac{5y}{4}\)
\(3\cdot\dfrac{5y}{4}-2y=35\)
=> y = 20
=> x = \(\dfrac{5\cdot20}{4}\)=25
d) \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
=> \(\frac{y+z-x}{4+6-2}=\frac{8}{8}=1\)
=> \(\frac{x}{2}=1\Rightarrow x=2\)
=> \(\frac{y}{4}=1\Rightarrow y=4\)
=> \(\frac{z}{6}=1\Rightarrow z=6\)
b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow x=y.\frac{3}{4}\)
\(\frac{y}{6}=\frac{z}{8}\Rightarrow z=y.\frac{8}{6}=y.\frac{4}{3}\)
=> \(3x-2y-z=y.3.\frac{3}{4}-2y-y.\frac{4}{3}=13\)
=> \(y.\frac{9}{4}-2y-y.\frac{4}{3}=y.\left(\frac{9}{4}-2-\frac{4}{3}\right)=13\)
=> \(y.\frac{-13}{12}=13\)
\(y=13:\frac{-13}{12}\)
\(y=-12\)
=> \(x=y.\frac{3}{4}=-9\)
=> \(z=y.\frac{4}{3}=-16\)
Bài 1 :
Ta có :
\(A=\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{7}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)
\(A=\frac{3\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)
\(A=\frac{3}{5}+\frac{1}{\frac{5}{2}}\)
\(A=\frac{3}{5}+\frac{2}{5}\)
\(A=1\)
\(b)\) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Đo đó :
\(\frac{y+z-x}{x}=2\)\(\Rightarrow\)\(y+z=3x\)\(\left(1\right)\)
\(\frac{z+x-y}{y}=2\)\(\Rightarrow\)\(x+z=3y\)\(\left(2\right)\)
\(\frac{x+y-z}{z}=2\)\(\Rightarrow\)\(x+y=3z\)\(\left(3\right)\)
Lại có : \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)
Thay (1), (2) và (3) vào \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\) ta được :
\(B=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)
Vậy \(B=8\)
Chúc bạn học tốt ~
bạn phùng minh quân câu 1 a tại sao lại rút gọn được \(\frac{3.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}=\frac{3}{5}\) vậy nó không cùng nhân tử mà
câu b \(\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{\left(y-y+y\right)+\left(-x+x+x\right)+\left(z+z-z\right)}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)sao lại ra bằng 2
(mình chỉ góp ý thôi nha tại mình làm thấy nó sai sai)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{27}{9}=3\)
=>\(\begin{cases}x=6\\y=9\\z=12\end{cases}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/2 = y/3 = z/4 = x + y + z / 2 + 3 + 4 = 27/9 = 3
x/2 = 3 => x = 3 . 2 = 6
y/3 = 3 => y = 3 . 3 = 9
z/4 = 3 => z = 3 . 4 = 12
Vậy x = 6; y = 9 và z = 12.
\(\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}=\frac{x}{2}-\frac{4}{2}=\frac{y}{3}-\frac{6}{3}=\frac{z}{4}-\frac{8}{4}=\frac{x}{2}-2=\frac{y}{3}-2=\frac{z}{4}-2\)
\(=>\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{27}{9}=3\)
\(=>\hept{\begin{cases}x=3.2=6\\y=3.3=9\\z=3.4=12\end{cases}}\)
Bạn ko cần phải lo vì hồi hè mik làm bài này nhìu lắm rùi
Chúc bạn học giỏi nha!!!
K cho mik với nhé
\(\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}\)
\(\Rightarrow\frac{x-4+y-6+z-8}{2+3+4}\)
\(\Rightarrow\frac{\left(x+y+z\right)-18}{9}\)
\(\Rightarrow\frac{27-18}{9}=\frac{9}{9}=1\)
\(\Rightarrow\frac{x-4}{2}=1\Rightarrow x=6\)
\(\Rightarrow\frac{y-6}{3}=1\Rightarrow y=9\)
\(\Rightarrow\frac{z-8}{4}\Rightarrow z=12\)