Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{3}{-4}=\frac{-3}{4};\frac{-1}{-4}=\frac{1}{4}\)
Vì - 3 < 1 nên \(\frac{-3}{4}< \frac{1}{4}\)
hay \(\frac{3}{-4}< \frac{-1}{-4}\)
Quy đồng mẫu ta được:
15/17=15.27/17.27=405/459
25/27=25.17/27.27=425/459
⇒405/459<425/459⇒15/17<25/27
\(\frac{3^6.\left(3^2.5\right)^4-\left(3.5\right)^3:5^9}{\left(3^3\right)^4.\left(5^2\right)^3+\left(5.3^2\right)^6}\) = \(\frac{3^{14}.5^4-3^3:5^6}{3^{12}.5^6+5^6.3^{12}}\) = \(\frac{3^{14}.5^{10}-3^3}{3^{12}.5^{12}+5^{12}.3^{ }^{12}^{ }}=\frac{3^{11}.5^{10}-1}{2.3^9.5^{12}}\)
\(E=\frac{3^6.45^4-15^{13}.5^{-9}}{27^4.25^3+45^6}\)
\(E=\frac{3^6.3^8.5^4-3^{13}.5^{13}.5^{-9}}{3^{12}.5^6+3^{12}.5^6}\)
\(E=\frac{3^{14}.5^4-3^{13}.5^4}{3^{12}.5^6\left(1+1\right)}\)
\(E=\frac{3^{13}.5^4\left(3-1\right)}{3^{12}.5^6.2}\)
\(E=\frac{3}{25}\)
\(A=\frac{3}{2}\times\left(\frac{1}{13\times11}+\frac{1}{13\times15}+\frac{1}{15\times17}+.....+\frac{1}{97\times99}\right)\)
\(A=\frac{3}{2}\times\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+......+\frac{1}{97}-\frac{1}{99}\right)\)
\(A=\frac{3}{2}\times\left(\frac{1}{11}-\frac{1}{99}\right)\)
\(A=\frac{3}{2}\times\frac{8}{99}\)
\(A=\frac{4}{33}\)
b] \(\frac{A}{5}=\frac{4}{31.35}+\frac{6}{35.41}+\frac{9}{41.50}+\frac{7}{50.57}\)
\(\frac{A}{5}=\frac{1}{31}-\frac{1}{35}+\frac{1}{35}-\frac{1}{41}+\frac{1}{41}-\frac{1}{50}+\frac{1}{50}-\frac{1}{57}\)
\(\frac{A}{5}=\frac{1}{31}-\frac{1}{57}\)
\(\Rightarrow A=5\left(\frac{1}{31}-\frac{1}{57}\right)=\frac{130}{1767}\)
c] Ta đặt \(\left(8n+5,6n+4\right)=d\)
\(\Rightarrow\frac{8n+5\div d}{6n+4\div d}\Rightarrow4\times\left(6n+4\right)-3\times\left(8n+5\right)=\left(24n+16\right)-\left(24n+15\right):d\)\(\Rightarrow d=1\)
Vậy \(\frac{8n+5}{6n+4}\)là phân số tối giản