Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-20\right)\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{200}}{\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}}=\frac{1}{2000}\)
\(\left(x-20\right)\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{200}}{\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+....+\left(\frac{198}{2}+1\right)+1}=\frac{1}{2000}\)
\(\left(x-20\right)\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{\frac{200}{200}+\frac{200}{199}+\frac{200}{198}+....+\frac{200}{2}}=\frac{1}{2000}\)
\(\left(x-20\right)\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}}{200\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)}=\frac{1}{2000}\)
\(\left(x-20\right).\frac{1}{200}=\frac{1}{2000}\)
\(\left(x-20\right)=\frac{1}{2000}:\frac{1}{200}=\frac{1}{2000}.200=\frac{1}{10}\)
\(\Rightarrow x=\frac{1}{10}+20=\frac{201}{10}\)
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+\left(\frac{3}{197}+1\right)+...+\left(\frac{198}{2}+1\right)+1}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}+\frac{200}{200}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{200\cdot\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+\frac{1}{197}+...+\frac{1}{2}\right)}\)
\(=\frac{1}{200}\)
Đặt: \(\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{199}{1}\)là B
Cộng 1 vào mỗi phần số trừ phân số cuối cùng ta sẽ được:
B= \(\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+...+\left(\frac{198}{2}+1\right)+1\)
=> B= \(\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}+1\)
=> B= \(\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}+\frac{200}{200}\)
=> B= \(200\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)\)
Đặt \(A=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\) => B= \(200\) X A
=> \(\frac{A}{B}\)\(=\frac{1}{200}\)
=> \(\left(x-20\right).\frac{1}{200}=\frac{1}{2000}\)
=>\(x-20\) =\(\frac{1}{2000}:\frac{1}{200}\)
=> \(x-20=\).......................... Bạn tự làm tiếp nhé, chúc bạn học tốt !!!^^\(\)
i don't now
mong thông cảm !
...........................
\(B=\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}\)
\(=\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+\left(\frac{3}{197}+1\right)+...+\left(199-1-1-1-...1\right)\)(198 chữ số 1)
\(=\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+1=200.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{197}+\frac{1}{198}+\frac{1}{199}+\frac{1}{200}\right)=200.A\)
\(\Rightarrow\frac{A}{B}=\frac{A}{200.A}=\frac{1}{200}\)
Ta có :
\(B=\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}\)
\(B=\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+\left(\frac{3}{197}+1\right)+...+\left(\frac{198}{2}+1\right)+\left(\frac{199}{1}-1-1-1-...-1\right)\)
\(B=\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}+\frac{200}{200}\)
\(B=200\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(\Rightarrow\)\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{200\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\right)}=\frac{1}{200}\)
Vậy \(\frac{A}{B}=\frac{1}{200}\)
Chúc bạn học tốt ~
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\) (1)
\(B=\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}\) (2)
\(\left(1\right)\left(2\right)\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}}\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+\left(\frac{3}{198}+1\right)+...+\left(\frac{198}{2}+1\right)+1}\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}+\frac{200}{200}}\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{200\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{999}+\frac{1}{200}\right)}\)
\(\Rightarrow\frac{A}{B}=\frac{1}{200}\)
Ta có :
\(B=\frac{1}{199}+\frac{2}{198}+...+\frac{198}{2}+\frac{199}{1}\)
\(B=\frac{1}{199}+\frac{2}{198}+...+\frac{198}{2}+199\)
\(B=\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+...+\left(\frac{198}{2}+1\right)+1\)
\(B=\frac{200}{199}+\frac{200}{198}+...+\frac{200}{2}+1\)
\(B=\frac{200}{200}+\frac{200}{199}+\frac{200}{198}+...+\frac{200}{2}\)
\(B=200.\left(\frac{1}{2}+...+\frac{1}{198}+\frac{1}{199}+\frac{1}{200}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+...+\frac{1}{198}+\frac{1}{199}+\frac{1}{200}}{200.\left(\frac{1}{2}+...+\frac{1}{198}+\frac{1}{199}+\frac{1}{200}\right)}=\frac{1}{200}\)
Ủng hộ mk nha !!! ^_^
Để chiều mình làm cho
làm luôn đi bạn mình đang cần vội