Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(E=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{99}}+\frac{1}{7^{100}}\)
\(\Rightarrow7E=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{98}}+\frac{1}{7^{99}}\)
\(\Rightarrow7E-E=\left(1+\frac{1}{7}+...+\frac{1}{7^{98}}+\frac{1}{7^{99}}\right)-\left(\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}+\frac{1}{7^{100}}\right)\)
\(\Rightarrow6E=1-\frac{1}{7^{100}}\)
\(\Rightarrow E=\frac{1-\frac{1}{7^{100}}}{6}\)
\(\Rightarrow A=\left(36-\frac{36}{7^{100}}\right):\frac{1-\frac{1}{7^{100}}}{6}\)
\(\Rightarrow A=36\left(1-\frac{1}{7^{100}}\right).\frac{6}{1-\frac{1}{7^{100}}}\)
\(\Rightarrow A=36.6=216\)
a) \(A=7+7^2+...+7^{99}\)
\(7A=7^2+7^3+...+7^{100}\)
\(7A-A=7^2+7^3+...+7^{100}-7-7^2-...-7^{99}\)
\(6A=7^{100}-7\)
\(A=\frac{7^{100}-7}{6}\)
Mà 7100 > 7100 - 7 => A < \(\frac{7^{100}}{6}\)
b) \(A=7+7^2+...+7^{99}\)
\(A=\left(7+7^2+7^3\right)+...+\left(7^{97}+7^{98}+7^{99}\right)\)
\(A=\left(7+7^2+7^3\right)+...+7^{96}.\left(7+7^2+7^3\right)\)
\(A=399+...+7^{96}.399\)
\(A=399.\left(1+...+7^{96}\right)⋮19\left(đpcm\right)\)
M = 512 - 512/2 - .... - 512/2^10
= 2^9 - 2^9 / 2 - 2^9/2^2 - ...2^9/2^10
= 2^9 - 2^8 - 2^7 - 2^6 -.... - 1/2
2M = 2^10 - 2^9 - 2^8 - .... - 1
2M - M = 2^10 - 2^9 - 2^8 -... -1 - 2^9 + 2^8 + 2^7 +... + 1 + 1/2
M = 2^10 - 2.2^9 + 1/2
M = 2^10 - 2^10 + 1/2
M = 1/2
Đặt \(A=\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
\(\Rightarrow49A=1-\frac{1}{7^2}+...+\frac{1}{7^{4n-4}}-\frac{1}{7^{4n}}+..+\frac{1}{7^{96}}-\frac{1}{7^{98}}\)
\(\Rightarrow49A+A=50A=1-\frac{1}{7^{100}}\)
\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{50}=\frac{1}{50}-\frac{1}{7^{100}.50}< \frac{1}{50}\left(ĐPCM\right)\)
Đặt S = \(\frac{1}{7^2}+\frac{1}{7^4}+\frac{1}{7^6}+...+\frac{1}{7^{100}}\)
=> 72S = 49S = \(1+\frac{1}{7^2}+\frac{1}{7^4}+...+\frac{1}{7^{98}}\)
=> 49S - S = \(\left(1+\frac{1}{7^2}+\frac{1}{7^4}+...+\frac{1}{7^{98}}\right)-\left(\frac{1}{7^2}+\frac{1}{7^4}+\frac{1}{7^6}+...+\frac{1}{7^{100}}\right)\)
=> 48S = \(1-\frac{1}{7^{100}}\)
=> \(S=\frac{1-\frac{1}{7^{100}}}{48}\)
Khi đó A = \(\left(\frac{1-\frac{1}{7^{100}}}{48}\right):\left(1-\frac{1}{7^{100}}\right)=\frac{1}{48}\)
Ta có :
\(A=\left(1+7+7^2\right)+\left(7^3+7^4+7^5\right)+...+\left(7^{2018}+7^{2019}+7^{2020}\right)\)
\(=\left(1+7+7^2\right)+7^3\left(1+7+7^2\right)+...+7^{2018}\left(1+7+7^2\right)\)
\(=\left(1+7+7^2\right)\left(1+7^3+7^6+...+7^{2018}\right)\)
\(=57\cdot\left(1+7^3+7^6+...+7^{2018}\right)\)
\(=19\cdot3\cdot\left(1+7^3+7^6+...+7^{2018}\right)⋮19\) (đpcm)
\(A=1+7+7^2+7^3+...+7^{2019}+7^{2020}\)
\(\Leftrightarrow A=\left(1+7+7^2\right)+\left(7^3+7^4+7^5\right)+....+\left(7^{2018}+7^{2019}+7^{2020}\right)\)
\(\Leftrightarrow A=\left(1+7+49\right)+7^3\left(1+7+49\right)+...+7^{2018}\left(1+7+49\right)\)
\(\Leftrightarrow A=57+7^3\cdot57+...+7^{2018}\cdot57\)
\(\Leftrightarrow A=57\left(1+7^3+....+7^{2018}\right)\)
\(\Leftrightarrow A=3\cdot19\left(1+7^3+...+7^{2018}\right)\)
=> A chia 19 dư 0
\(\frac{7^{7^{7^7}}-7^{7^{7^7}}}{100}=\frac{0}{100}=0\left(dư100\right)\)
Nhầm dư 0(0/ số nào cũng =0)