K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

Bài 1:

a, \(\frac{1}{-16}-\frac{3}{45}=\frac{-1}{16}-\frac{1}{15}\)

\(=\frac{-15}{240}-\frac{16}{240}\)

\(=\frac{-31}{240}\)

b, \(=\frac{-10}{12}-\frac{-12}{12}\)

\(=\frac{2}{12}=\frac{1}{6}\)

c, \(=\frac{-30}{6}-\frac{1}{6}\)

\(=\frac{-31}{6}\)

Bài 2:

a, \(x=-\frac{1}{2}-\frac{3}{4}\)

\(x=-\frac{1}{4}\)

b,   \(\frac{1}{2}+x=-\frac{11}{2}\)

\(x=-\frac{11}{2}-\frac{1}{2}\)

\(x=-6\)

Bạn nhớ k đúng và chọn câu trả lời này nhé!!!! Mình giải đúng và chính xác hết ^_^

11 tháng 3 2017

Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

           \(\frac{1}{3^2}< \frac{1}{2\cdot3}\)

             \(.\)                   \(.\)

             \(.\)

             \(.\)                    \(.\)  

             \(.\)                    \(.\)

         \(\frac{1}{2013^2}< \frac{1}{2012\cdot2013}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+.........+\frac{1}{2013^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{2012\cdot2013}\)

Mà \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{2012\cdot2013}=1-\frac{1}{2013}< 1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{2013^2}< 1\)

Nhớ k cho mình nhé!

Chúc các bạn học tốt!

10 tháng 3 2017

mình giải ở đè trước rồi

19 tháng 3 2016

a/=\(27\frac{51}{59}-7\frac{51}{59}+\frac{1}{3}\)

=20+\(\frac{1}{3}\)

=\(\frac{61}{3}\)

19 tháng 9 2016

b) \(\frac{4}{9}x-\frac{1}{2}=\frac{-5}{9}\)

\(\Rightarrow\frac{4}{9}x=\frac{-5}{9}+\frac{1}{2}\)

\(\Rightarrow\frac{4}{9}x=\frac{-1}{18}\)

\(\Rightarrow x=\frac{-1}{18}:\frac{4}{9}\)

\(\Rightarrow x=\frac{-1}{8}\)

23 tháng 4 2017

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}=\frac{2001}{2003}\)

\(\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}\right)=\frac{1}{2}\cdot\frac{2001}{2003}\)

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)

\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{2001}{4006}\)

\(\frac{1}{x+1}=\frac{1}{2003}\)

\(\Rightarrow x+1=2003\)

\(x=2002\)

Vậy x = 2002

23 tháng 4 2017

Bài này lớp 6 thật à bạn. 

19 tháng 4 2017

\(\Rightarrow A=5\left(\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{99x100}\right)\)

\(\Rightarrow A=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(\Rightarrow A=5\left(1-\frac{1}{100}\right)\)

\(\Rightarrow A=\frac{5x99}{100}=\frac{99}{20}\)

19 tháng 4 2017

\(A=\frac{5}{1}-\frac{5}{2}+\frac{5}{2}-\frac{5}{3}+\frac{5}{3}-\frac{5}{4}+....+\frac{5}{99}-\frac{5}{100}\)

\(A=\frac{5}{1}+\left(-\frac{5}{2}+\frac{5}{2}\right)+\left(-\frac{5}{3}+\frac{5}{3}\right)+\left(-\frac{5}{4}+\frac{5}{4}\right)+...\left(-\frac{5}{99}+\frac{5}{99}\right)+\frac{5}{100}\)

\(A=\frac{5}{1}+0+0+....+0+\frac{5}{100}\)

\(A=\frac{500}{100}+\frac{5}{100}=\frac{205}{100}=\frac{101}{20}\)

Đúng 100%

Đúng 100%

Đúng 100%