Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, \(B=\frac{\frac{x}{x+3}-\frac{9}{x^2+6x+9}}{\frac{3}{x+3}}=\frac{\frac{x}{x+3}-\frac{3^2}{x^2+2\cdot3\cdot x+3^2}}{\frac{3}{x+3}}\)
\(=\frac{\frac{x}{x+3}-\left(\frac{3}{x+3}\right)^2}{\frac{3}{x+3}}=1-\frac{3}{x+3}\)
a, Vậy điều kiện là \(x\ne3\)
c, \(B=\frac{1}{3}\Leftrightarrow1-\frac{3}{x+3}=\frac{1}{3}\)
\(\Rightarrow\frac{3}{x+3}=\frac{2}{3}\Leftrightarrow x=\frac{3}{2}\)
\(a,ĐKXĐ\hept{\begin{cases}x-3\ne0\\x+3\ne0\end{cases}\Leftrightarrow x\ne\pm3}\)
Ta có: \(M=\frac{3}{x-3}-\frac{6x}{9-x^2}+\frac{x}{x+3}\)
\(=\frac{3}{x-3}+\frac{6x}{x^2-9}+\frac{x}{x+3}\)
\(=\frac{3\left(x+3\right)+6x+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{x+3}{x-3}\)
\(b,x=\frac{1}{2}\Rightarrow M=\frac{\frac{1}{2}+3}{\frac{1}{2}-3}=-\frac{7}{5}\)
a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)
b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)
\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)
a) Giá trị biểu thức A xác định \(\Leftrightarrow\hept{\begin{cases}x+3\ne0\\x-3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x\ne3\end{cases}}\)
b)\(A=\frac{4}{x+3}+\frac{2}{x-3}+\frac{9-5x}{\left(x-3\right)\left(x+3\right)}=\frac{4\left(x-3\right)+2\left(x+3\right)+9-5x}{\left(x-3\right)\left(x+3\right)}\)
\(\frac{4x-12+2x+6+9-5x}{\left(x-3\right)\left(x+3\right)}=\frac{x+3}{\left(x-3\right)\left(x+3\right)}=\frac{1}{x-3}\)
c) Ta có: x=1 thoã mãn ĐKXĐ
Thay x = 1 vào biểu thức A ta được:
A= \(\frac{1}{1-3}=\frac{-1}{2}\)
Vậy giá trị biểu thức A là \(\frac{-1}{2}\)tại x = 1
Câu 3 :
\(a,A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\frac{2x}{5x-5}\) ĐKXđ : \(x\ne\pm1\)
\(A=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\right):\frac{2x}{5\left(x-1\right)}\)
\(A=\left(\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{5\left(x-1\right)}{2x}\)
\(A=\frac{4x}{\left(x-1\right)\left(x+1\right)}.\frac{5\left(x-1\right)}{2x}\)
\(A=\frac{10}{x+1}\)
\(B=\left(\frac{x}{3x-9}+\frac{2x-3}{3x-x^2}\right).\frac{3x^2-9x}{x^2-6x+9}.\)
ĐKXđ : \(x\ne0;x\ne3\)
\(B=\left(\frac{x}{3\left(x-3\right)}+\frac{2x-3}{x\left(3-x\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)
\(B=\left(\frac{x^2}{3x\left(x-3\right)}+\frac{9-6x}{3x\left(x-3\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)
\(B=\frac{x^2-6x+9}{3x\left(x-3\right)}.\frac{3x\left(x-3\right)}{x^2-6x+9}=1\)
a) ĐKXĐ: \(\hept{\begin{cases}x+3\ne0\\3-x\ne0\\x^2-9\ne0\end{cases}}\) <=> \(\hept{\begin{cases}x\ne-3\\x\ne3\\x\ne\pm3\end{cases}}\)
Ta có: A = \(\frac{x+1}{x+3}-\frac{x-1}{3-x}+\frac{2x-2x^2}{x^2-9}\)
A = \(\frac{\left(x+1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{\left(x+3\right)\left(x-1\right)}{\left(x+3\right)\left(x-3\right)}+\frac{2x-2x^2}{\left(x-3\right)\left(x+3\right)}\)
A = \(\frac{x^2-2x-3+x^2+2x-3+2x-2x^2}{\left(x-3\right)\left(x+3\right)}\)
A = \(\frac{2x-6}{\left(x-3\right)\left(x+3\right)}\)
A = \(\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
A = \(\frac{2}{x+3}\)
b) Để A nhận giá trị dương <=> 2 \(⋮\)x + 3
<=> x + 3 \(\in\)Ư(2) = {1; 2}
Lập bảng:
x + 3 | 1 | 2 |
x | -2 | -1 |
Vậy ....
\(a)A=(\frac{x}{(x+6)(x+6)}-\frac{x-6}{x(x+6)})\cdot\frac{x(x+6)}{2x-6}+\frac{x}{x-6}\)
\(A=\frac{x^2-(x-6)^2}{x(x+6)(x-6)}\cdot\frac{x(x+6)}{2x-6}-\frac{x}{x-6}=\frac{(x-x+6)(x+x-6)}{(x-6)(2x-6)}-\frac{x}{x-6}\)
\(=\frac{6(2x-6)}{(x-6)(2x-6)}-\frac{x}{x-6}=\frac{6}{(x-6)}-\frac{x}{x-6}\cdot\frac{6-x}{x-6}=-1\)
\(b)\text{A luôn = -1 với mọi x}\)
ĐK: `x \ne 3; x \ne -3`
`A=3/(x-3)-(6x)/(9-x^2)+x/(x+3)`
`=3/(x-3)+(6x)/(x^2-9)+x/(x+3)`
`=3/(x-3)+(6x)/((x-3)(x+3))+x/(x+3)`
`=(3(x+3)+6x+x(x-3))/((x-3)(x+3))`
`=(3x+9+6x+x^2-3x)/((x+3)(x-3))`
`=(x^2+6x+9)/((x-3)(x+3))`
`=((x+3)^2)/((x-3)(x+3))`
`=(x+3)/(x-3)`
`x=5 => A=(5+3)/(5-3)=4`
ĐKXĐ:\(\left\{{}\begin{matrix}x-3\ne0\\9-x^2\ne0\\x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x^2\ne9\\x\ne-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne-3\end{matrix}\right.\)
\(\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}\\ =\dfrac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{6x}{\left(3-x\right)\left(3+x\right)}+\dfrac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{3x+9}{\left(x-3\right)\left(x+3\right)}+\dfrac{6x}{\left(x-3\right)\left(x+3\right)}+\dfrac{x^2-3x}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{x+3}{x-3}\)
Thay x=5 vào \(\dfrac{x+3}{x-3}=\dfrac{5+3}{5-3}=\dfrac{8}{2}=4\)