Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{19}{37}+\left(1-\frac{19}{37}\right)\)
\(=\frac{19}{37}+1-\frac{19}{37}\)
\(=\left(\frac{19}{37}-\frac{19}{37}\right)+1\)
\(=0+1=1\)
kazuto kirigaya thật là bt làm ko đó ko bt thì nói đi còn bt thì làm đi
a) Ta có: \(\frac{16}{15}\cdot\frac{-5}{14}\cdot\frac{54}{24}\cdot\frac{56}{21}\)
\(=\frac{16}{15}\cdot\frac{-5}{14}\cdot\frac{9}{4}\cdot\frac{8}{3}\)
\(=4\cdot\frac{-1}{3}\cdot\frac{4}{7}\cdot3\)
\(=12\cdot\frac{-4}{21}=\frac{-48}{21}=\frac{-16}{7}\)
b) Ta có: \(5\cdot\frac{7}{5}=\frac{35}{5}=7\)
c) Ta có: \(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}\)
\(=\frac{5}{9}\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)\)
\(=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)
d) Ta có: \(4\cdot11\cdot\frac{3}{4}\cdot\frac{9}{121}\)
\(=\frac{4\cdot11\cdot3\cdot9}{4\cdot121}=\frac{27}{11}\)
e) Ta có: \(\frac{3}{4}\cdot\frac{16}{9}-\frac{7}{5}:\frac{-21}{20}\)
\(=\frac{4}{3}+\frac{4}{3}=\frac{8}{3}\)
g) Ta có: \(2\frac{1}{3}-\frac{1}{3}\cdot\left[\frac{-3}{2}+\left(\frac{2}{3}+0,4\cdot5\right)\right]\)
\(=\frac{7}{3}-\frac{1}{3}\cdot\left[\frac{-3}{2}+\frac{2}{3}+2\right]\)
\(=\frac{7}{3}-\frac{1}{3}\cdot\frac{7}{6}\)
\(=\frac{7}{3}-\frac{7}{18}=\frac{42}{18}-\frac{7}{18}=\frac{35}{18}\)
a) \(\frac{2}{3}+\frac{1}{3}\cdot\left(-\frac{2}{5}\right)\\ =\frac{2}{3}+\frac{-2}{15}\\ =\frac{10}{15}+\frac{-2}{15}\\ =\frac{8}{15}\)
b) \(0,75\cdot1\frac{7}{9}-1\frac{2}{5}:\frac{-21}{20}\\ =\frac{3}{4}\cdot\frac{16}{9}-\frac{7}{5}\cdot\frac{-20}{21}\\ =\frac{4}{3}-\frac{-4}{3}\\ =\frac{4}{3}+\frac{4}{3}\\ =\frac{4}{3}\cdot2\\ =\frac{8}{3}\)
c) \(\frac{-2}{17}+\frac{15}{23}+\frac{15}{-17}-\frac{-4}{19}+\frac{8}{23}\\ =\frac{-2}{17}+\frac{15}{23}+\frac{-15}{17}+\frac{4}{19}+\frac{8}{23}\\ =\left(\frac{-2}{17}+\frac{-15}{17}\right)+\left(\frac{15}{23}+\frac{8}{23}\right)+\frac{4}{19}\\ =\left(-1\right)+1+\frac{4}{19}\\ =0+\frac{4}{19}\\ =\frac{4}{19}\)
d) \(2019^0\cdot\left(6-2\frac{4}{5}\right)\cdot3\frac{1}{8}-1\frac{3}{5}:25\%\\ =1\cdot\left(\frac{30}{5}-\frac{14}{5}\right)\cdot\frac{25}{8}-\frac{8}{5}:\frac{1}{4}\\ =1\cdot\frac{16}{5}\cdot\frac{25}{8}-\frac{8}{5}\cdot4\\ =\frac{16}{5}\cdot\frac{25}{8}-\frac{32}{5}\\ =\frac{50}{5}-\frac{32}{5}\\ =\frac{18}{5}\)
e) \(\left(\frac{7}{8}-\frac{1}{2}\right)\cdot2\frac{2}{3}-\frac{3}{7}\cdot\left(2,5^2\right)\\ =\left(\frac{7}{8}-\frac{4}{8}\right)\cdot\frac{8}{3}-\frac{3}{7}\cdot6,25\\ =\frac{3}{8}\cdot\frac{8}{3}-\frac{3}{7}\cdot\frac{25}{4}\\ =1-\frac{75}{28}\\ =\frac{28}{28}-\frac{75}{28}\\ =\frac{-47}{28}\)
a, \(\frac{2}{3}+\frac{1}{3}.\left(\frac{-2}{5}\right)\)
= \(\frac{2}{3}+\frac{-2}{15}=\frac{8}{15}\)
b, \(0,75.1\frac{7}{9}-1\frac{2}{5}:\frac{-21}{20}\)
= \(\frac{3}{4}.\frac{16}{9}-\frac{7}{5}.\frac{-20}{21}\)
= \(\frac{4}{3}-\left(\frac{-4}{3}\right)=\frac{8}{3}\)
c, \(\frac{-2}{17}+\frac{15}{23}+\frac{15}{-17}+\frac{4}{19}+\frac{8}{23}\)
= \(\left(\frac{-2}{17}+\frac{-15}{17}\right)+\left(\frac{15}{23}+\frac{8}{23}\right)+\frac{4}{19}\)
= \(\left(-1\right)+1+\frac{4}{19}=0+\frac{4}{19}=\frac{4}{19}\)
d, \(\left(6-2\frac{4}{5}\right).3\frac{1}{8}-1\frac{3}{5}:25\%\)
=> \(\left(6-\frac{14}{5}\right).\frac{25}{8}-\frac{8}{5}:25\%\)
= \(\frac{16}{5}.\frac{25}{8}-\frac{8}{5}.25:100\)
= 10 - 0,4 = 9,6
e, \(\left(\frac{7}{8}-\frac{1}{2}\right).2\frac{2}{3}-\frac{3}{7}.\left(2,5^2\right)\)
=> \(\frac{3}{8}.\frac{8}{3}-\frac{3}{7}.6,25\)
= \(1-\frac{75}{28}=\frac{-47}{28}\)
#)Giải :
a)\(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{24.25}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)
\(=\frac{1}{5}-\frac{1}{25}\)
\(=\frac{4}{25}\)
b)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
a) \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{24.25}\)
= \(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{24}-\frac{1}{25}\)
= \(\frac{1}{5}-\frac{1}{25}\)
= \(\frac{4}{25}\)
b) \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
= \(1-\frac{1}{101}\)
= \(\frac{100}{101}\)
c) \(5\frac{2}{7}.\frac{8}{11}+5\frac{2}{7}.\frac{5}{11}-5\frac{2}{7}.\frac{2}{11}\)
= \(5\frac{2}{7}.\left(\frac{8}{11}+\frac{5}{11}-\frac{2}{11}\right)\)
= \(5\frac{2}{7}\)
= \(\frac{37}{7}\)
\(a,\frac{21}{36}.\frac{5}{2}-\frac{7}{12}.\frac{2}{7}+\left(2018-2019\right)^0\)
=\(\frac{7}{12}.\frac{5}{2}-\frac{7}{12}.\frac{2}{7}+\left(-1\right)\)
= \(\frac{7}{12}.\left(\frac{5}{2}+\frac{2}{7}\right)+\left(-1\right)\)
=\(\frac{7}{12}.\frac{39}{14}+\left(-1\right)\)
=\(\frac{13}{8}+\left(-1\right)\)
= \(\frac{5}{8}\)
\(b,-12\frac{1}{3}-\frac{5}{7}+7\frac{1}{3}+1\frac{5}{7}+1^{2019}\)
=\(-\frac{37}{3}+\frac{-5}{7}+\frac{22}{3}+\frac{12}{7}+1\)
=\(\left(\frac{-37+22}{3}\right)+\left(\frac{-5+12}{7}\right)+=1\)
= \(-5+1+1\)
=\(-3\)
câu a sai