Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1999}{2011}-\frac{2011}{1999}-\left(\frac{-12}{1999}-\frac{12}{2011}\right)\)
\(=\frac{1999}{2011}-\frac{2011}{1999}+\frac{12}{1999}+\frac{12}{2011}\)
\(=\left(\frac{1999}{2011}+\frac{12}{2011}\right)-\frac{2011}{1999}+\frac{12}{1999}\)
\(=1-\left(\frac{2011}{1999}-\frac{12}{1999}\right)\)
\(=1-1\)
\(=0\)
NHÉ !!!!!!!
Ta có : \(\frac{1999}{2011}-\frac{2011}{1999}-\left(\frac{-12}{1999}-\frac{12}{2011}\right)\)
=\(\frac{1999}{2011}-\frac{2011}{1999}+\frac{12}{1999}+\frac{12}{2011}\)
=\(\left(\frac{1999}{2011}+\frac{12}{2011}\right)+\left(\frac{12}{1999}-\frac{2011}{1999}\right)\)
=1-1
=0
\(\left(\frac{1999}{2011}-\frac{2011}{199}\right)-\left(-\frac{12}{1999}-\frac{12}{2001}\right)\)
=\(\frac{1999}{2011}-\frac{2011}{1999}+\frac{12}{1999}+\frac{12}{2011}\)
=\(\left(\frac{1999}{2011}+\frac{12}{2011}\right)+\left(-\frac{2011}{1999}+\frac{12}{1999}\right)\)
=\(\frac{2011}{2011}+\frac{1999}{1999}\)
=1+1
=2
\(\left(\frac{1999}{2011}-\frac{2011}{1999}\right)-\left(\frac{-12}{1999}-\frac{12}{2011}\right)\)
=\(\frac{1999}{2011}-\frac{2011}{1999}+\frac{12}{1999}+\frac{12}{2011}\)
=\(\left(\frac{1999}{2011}+\frac{12}{2011}\right)+\left(\frac{-2011}{1999}+\frac{12}{1999}\right)\)
=1-1
=-2
\(\left(\frac{1999}{2011}-\frac{2011}{1999}\right)-\left(\frac{-12}{1999}-\frac{12}{2011}\right)\)
\(=\frac{1999}{2011}-\frac{2011}{1999}+\frac{12}{1999}+\frac{12}{2011}\)
\(=\left(\frac{1999}{2011}+\frac{12}{2011}\right)+\left(-\frac{2011}{1999}+\frac{12}{1999}\right)\)
\(=\frac{2011}{2011}+\frac{-1999}{1999}=1+\left(-1\right)=0\)
\(\left(\frac{1999}{2011}-\frac{2011}{1999}\right)-\left(\frac{-12}{1999}-\frac{12}{2011}\right)\)
\(=\frac{1999}{2011}-\frac{2011}{1999}+\frac{12}{1999}+\frac{12}{2011}\)
\(=\left(\frac{1999}{2011}+\frac{12}{2011}\right)+\left(\frac{-2011}{1999}+\frac{12}{1999}\right)=\frac{2011}{2011}-\frac{1999}{1999}=1-1=0\)
\(\left(\frac{1999}{2011}-\frac{2011}{1999}\right)-\left(-\frac{12}{1999}-\frac{12}{2011}\right)\)
\(=\frac{1999}{2011}-\frac{2011}{1999}+\frac{12}{1999}+\frac{12}{2011}\)
\(=\left(\frac{1999}{2011}+\frac{12}{2011}\right)+\left(-\frac{2011}{1999}+\frac{12}{1999}\right)\)
\(=1+\left(-1\right)\)
\(=0\)
\(\left(\frac{1999}{2011}-\frac{2011}{1999}\right)-\left(\frac{-12}{1999}-\frac{12}{2011}\right)\)
= \(\frac{1999}{2011}-\frac{2011}{1999}+\frac{12}{1999}+\frac{12}{2011}\)
= \(\left(\frac{1999}{2011}+\frac{12}{2011}\right)-\left(\frac{2011}{1999}+\frac{-12}{1999}\right)\)
= \(\frac{2011}{2011}-\frac{1999}{1999}\)= 1-1 =0
\(\left(\frac{1999}{2011}-\frac{2011}{1999}\right)-\left(\frac{-12}{1999}-\frac{12}{2011}\right)\)
\(=\frac{1999}{2011}-\frac{2011}{1999}-\frac{12}{1999}+\frac{12}{2011}\)
\(=(\frac{1999}{2011}+\frac{12}{2011})-(\frac{2011}{1999}-\frac{12}{1999})\)
\(=1-1=0\)
\(\left(\frac{1999}{2011}-\frac{2011}{1999}\right)-\left(\frac{-12}{1999}-\frac{12}{2011}\right)\)
\(=\frac{1999}{2011}-\frac{2011}{1999}+\frac{12}{1999}+\frac{12}{2011}\)
\(=\left(\frac{1999}{2011}+\frac{12}{2011}\right)+\left(\frac{-2011}{1999}+\frac{12}{1999}\right)\)
\(=1-1\)
\(=0\)
Linz
\(\left(\frac{1999}{2011}-\frac{2001}{1999}\right)-\left(\frac{-12}{1999}-\frac{12}{2001}\right)=\frac{1999}{2011}-\frac{2011}{1999}+\frac{12}{1999}+\frac{12}{2001}\)
\(=\left(\frac{1999}{2011}+\frac{12}{2011}\right)+\left(\frac{-2011}{1999}+\frac{12}{1999}\right)=\frac{2011}{2011}+\left(\frac{-2011}{2011}\right)=1+\left(-1\right)=0\)
\(\left(\frac{1999}{2011}-\frac{2011}{1999}\right)-\left(\frac{-12}{1999}-\frac{12}{2011}\right)\)
\(=\frac{1999}{2011}-\frac{2011}{1999}+\frac{12}{1999}+\frac{12}{2011}\)
\(=\frac{2011}{2011}-\frac{1999}{1999}\)
\(=1-1=0\)
\(\left(\frac{1999}{2011}-\frac{2011}{1999}\right)-\left(\frac{-12}{1999}-\frac{12}{2011}\right)\)
\(=\frac{1999}{2011}-\frac{2011}{1999}+\frac{12}{1999}+\frac{12}{2011}\)
\(=\frac{2011}{2011}-\frac{1999}{1999}\)
\(=1-1=0\)