K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2015

\(25x^2+16y^2=50xy\)

\(\Leftrightarrow\) \(\left(5x+4y\right)^2-40xy=50xy\)

\(\Leftrightarrow\) \(\left(5x+4y\right)^2=90xy\)

Mặt khác, ta cũng có:  \(25x^2+16y^2=50xy\)

\(\Leftrightarrow\)  \(\left(5x-4y\right)^2=10xy\)

Do đó:

\(P^2=\frac{\left(5x-4y\right)^2}{\left(5x+4y\right)^2}=\frac{10xy}{90xy}=\frac{1}{9}\)

Vậy,  \(P'=\frac{1+\frac{1}{9}}{1-\frac{1}{9}}=1\frac{1}{4}\)

16 tháng 12 2015

1)

 \(25x^2-40xy+16y^2=10xy\Leftrightarrow\left(5x-4y\right)^2=10xy\)

\(25x^2+40xy+16y^2=10xy\Leftrightarrow\left(5x+4y\right)^2=90xy\)

\(P^2=\frac{1}{9}\Leftrightarrow Q=\frac{1+P^2}{1-P^2}=\frac{1+\frac{1}{81}}{1-\frac{1}{81}}=\frac{82}{80}=\frac{41}{40}\)

22 tháng 11 2017

giup minh voi cac ban

9 tháng 8 2016

\(B=9x-3x^2=-3\times\left(x^2-2\times x\times\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2\right)=-3\times\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]\)

\(\left(x-\frac{3}{2}\right)^2\ge0\)

\(\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\)

\(-3\times\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]\le\frac{27}{4}\)

Vậy Max B = \(\frac{27}{4}\) khi x = \(\frac{3}{2}\)

\(B=9x-3x^2\)

\(=3\left(x^2-2x\right)\)

\(=3\left(x^2-2x+1-1\right)\)

\(=-3+3\left(x-1\right)^2\ge-3\)

Max \(B=-3\Leftrightarrow x-1=0\Rightarrow x=1\)

17 tháng 2 2017

              \(A=\)\(36x^2\)\(+\)\(24x\)\(+7\)

\(\Leftrightarrow\)\(A=36x^2+24x+4+3\)

\(\Leftrightarrow\)\(A=\left(6x+2\right)^2+3\)

Vì  \(\left(6x+2\right)^2\)\(\ge0\) nên \(A\ge3\)

\(\Rightarrow GTNN\)của \(A\)là \(3\) khi \(\left(6x+2\right)^2=0.\)

\(\Leftrightarrow\)\(x=-\frac{1}{3}\)

Vậy GTNN  của \(A\)là \(3\)khi  \(x=-\frac{1}{3}\)