Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1010+1111+1212+1313+1414+1515+1616+1717}{2020+2121+2222+2323+2424+2525+2626+2727}\)
\(=\frac{101.10+101.11+...+101.17}{101.20+101.21+...+101.27}\)
\(=\frac{101.\left(10+11+...+17\right)}{101.\left(20+21+...+27\right)}\)
\(=\frac{108}{188}\)
\(=\frac{27}{47}\)
\(2>\left(\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{4}{96}\right)\cdot5.y>\frac{5}{6}\)
\(\Rightarrow2>\left(\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{1}{24}\right):5.y>\frac{5}{6}\)
\(\Rightarrow2>\left(\frac{20}{120}+\frac{16}{120}+\frac{9}{120}+\frac{5}{120}\right):5.y>\frac{5}{6}\)
\(\Rightarrow2>\frac{5}{12}:5.y>\frac{5}{6}\)
\(\Rightarrow2>\frac{1}{12}.y>\frac{5}{6}\)
Đặt :\(\frac{1}{12}.y=2\Rightarrow y=2:\frac{1}{12}=24\)
\(\frac{1}{12}.y=\frac{5}{6}\Rightarrow y=\frac{5}{6}:\frac{1}{12}=10\)
\(\Rightarrow24>y>10\)
\(\Rightarrow y\in\left\{11;12;...;23\right\}\)
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)
\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}+\frac{1}{13.15}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{15}\right)\)
\(=\frac{1}{2}.\frac{14}{15}\)
\(=\frac{7}{15}\)
a) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}+\frac{1}{13.15}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{15}\right)=\frac{1}{2}.\frac{14}{15}\)\(=\frac{7}{15}\)
b)\(\frac{1414+1515+...+1919}{2020+2121+...+2525}\)
\(\Rightarrow\frac{101\left(14+15+16+17+18+19\right)}{101\left(20+21+22+23+24+25\right)}\)
\(=\frac{14+15+16+17+18+19}{20+21+22+23+24+25}\)
\(=\frac{\left(19+14\right).6:2}{\left(25+20\right).6:2}=\frac{19+14}{25+20}=\frac{33}{45}=\frac{11}{15}\)
a) \(\frac{1212}{1515}\):\(\frac{2727}{2525}\)
= \(\frac{1212}{1515}\)* \(\frac{2525}{2727}\)
= \(\frac{101.12}{101.15}\)* \(\frac{101.25}{101.27}\)
= \(\frac{12}{15}\). \(\frac{25}{27}\)
= \(\frac{20}{27}\)
b) ban co the viet ro hon de bai dc ko?
\(\frac{1414+1515+1616+1717+1818+1919}{2020+2121+2222+2323+2424+2525}\)
\(=\frac{101\times\left(14+15+16+17+18+19\right)}{101\times\left(20+21+22+23+24+25\right)}\)
\(=\frac{14+15+16+17+18+19}{20+21+22+23+24+25}\)
+) Tử số :
Số các số hạng là : ( 19 - 14 ) : 1 + 1 = 6 ( số )
Tổng là : ( 19 + 14 ) x 6 : 2 = 99
+) Mẫu số :
Số các số hạng là : ( 25 - 20 ) : 1 + 1 = 6 ( số )
Tổng là : ( 25 + 20 ) x 6 : 2 = 135
\(\Leftrightarrow\frac{99}{135}=\frac{11}{15}\)
\(\frac{1414+1515+1616+1717+1818+1919}{2020+2121+2222+2323+2424+2525}\)
= \(\frac{\left(1414+1919\right)+\left(1515+1818\right)+\left(1616+1717\right)}{\left(2020+2525\right)+\left(2121+2424\right)+\left(2222+2323\right)}\)
= \(\frac{3333+3333+3333}{4545+4545+4545}=\frac{3333}{4545}=\frac{11}{15}\)
t i c k nhé!! 45435436457
\(\frac{14}{6}+\frac{1}{3}+\frac{14}{14}+\frac{14}{9}+\frac{7}{15}+\frac{6}{4}\)
\(=\frac{14}{6}+\frac{1}{3}+\frac{14}{9}+\frac{7}{15}+\frac{14}{14}+\frac{6}{4}\)
\(=\frac{42+6+28}{18}+\frac{7}{15}+\frac{2}{2}+\frac{3}{2}\)
\(=\frac{76}{18}+\frac{7}{15}+\frac{5}{2}\)
\(=\frac{76}{18}+\frac{5}{2}+\frac{7}{15}\)
\(=\frac{76+45}{18}+\frac{7}{15}\)
\(=\frac{121}{18}+\frac{7}{15}\)
\(=\frac{605+42}{90}\)
\(=\frac{647}{90}\)
\(\frac{14}{6}+\frac{1}{3}+\frac{14}{14}+\frac{14}{9}+\frac{7}{15}+\frac{6}{4}\)
\(=(\frac{7}{3}+\frac{1}{3})+1+(\frac{14}{9}+\frac{7}{15})+\frac{3}{2}\)
\(=\frac{8}{3}+1+\frac{91}{45}+\frac{3}{2}\)
\(=2+\frac{2}{3}+1+2+\frac{1}{45}+1+\frac{1}{2}\)
\(=\left(\frac{2}{3}+\frac{1}{45}+\frac{1}{2}\right)+\left(2+1+2+1\right)\)
\(=1+\frac{17}{90}+6\)
\(=7+\frac{17}{90}\)
\(=7\frac{17}{90}\)
DẤu nhân không phải x đâu nhe!
Cả hai đều sai