K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2015

13(x+3)+(x+3)(x-3)=6(2x+7)

13x+39+x^2-9-12x-42=0

x^2+x-12=0

x=3 và x=-4

**** cho mk nha!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

 

18 tháng 2 2017

Theo bài ra , ta có :

\(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\)

\(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{\left(x-3\right)\left(x+3\right)}\)

ĐKXĐ : \(x\ne3,x\ne-3,x\ne-\frac{7}{2}\)

Quy đồng và khử mẫu phương trình ta đk :

\(13\left(x+3\right)+\left(x-3\right)\left(x+3\right)=6\left(2x+7\right)\)

\(\Leftrightarrow\left(x+3\right)\left(13+x-3\right)=6\left(2x+7\right)\)

\(\Leftrightarrow\left(x+3\right)\left(x+10\right)=12x+42\)

\(\Leftrightarrow x^2+13x+30=12x+42\)

\(\Leftrightarrow x^2+13x-12x+30-42=0\)

\(\Leftrightarrow x^2+x-12=0\)

\(\Leftrightarrow x^2-3x+4x-12=0\)

\(\Leftrightarrow x\left(x-3\right)+4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}x-3=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=3\\x=-4\end{matrix}\right.\)

Kết hợp với ĐKXĐ ta có : x = -4

Vậy \(S=\left\{-4\right\}\)

Chúc bạn học tốt =))ok

18 tháng 2 2017

ĐKXĐ: x\(\ne\)3;-7/2;-3

\(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\Leftrightarrow\frac{13\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(2x+7\right)}+\frac{\left(x-3\right)\left(x+3\right)}{\left(2x+7\right)\left(x-3\right)\left(x+3\right)}=\frac{6\left(2x+7\right)}{\left(x-3\right)\left(x+3\right)\left(2x+7\right)}\)

\(\Leftrightarrow13\left(x+3\right)+\left(x-3\right)\left(x+3\right)=6\left(2x+7\right)\)

\(\Leftrightarrow13x+39+x^2-9=12x+42\\ \Leftrightarrow x^2+x=12\)

\(\Leftrightarrow x^2+x-12=0\Leftrightarrow x^2-3x+4x-12=0\\ \Leftrightarrow x\left(x-3\right)+4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)=0\Leftrightarrow\left[\begin{matrix}x-3=0\Rightarrow x=3\\x+4=0\Rightarrow x=-4\end{matrix}\right.\)

Nhận thấy x=3 không thỏa mãn ĐKXĐ nên pt có 1 nghiệm duy nhất là x=-4

28 tháng 3 2020

a) ĐKXĐ: x khác +2

\(\frac{x-2}{2+x}-\frac{3}{x-2}-\frac{2\left(x-11\right)}{x^2-4}\)

<=> \(\frac{x-2}{2+x}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{\left(x-2\right)\left(x+2\right)}\)

<=> (x - 2)^2 - 3(2 + x) = 2(x - 11)

<=> x^2 - 4x + 4 - 6 - 3x = 2x - 22

<=> x^2 - 7x - 2 = 2x - 22

<=> x^2 - 7x - 2 - 2x + 22 = 0

<=> x^2 - 9x + 20 = 0

<=> (x - 4)(x - 5) = 0

<=> x - 4 = 0 hoặc x - 5 = 0

<=> x = 4 hoặc x = 5

làm nốt đi 

24 tháng 6 2019

   \(\frac{13}{\left(2x+7\right)\left(x-3\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\left(1\right)\)

\(ĐKXĐ:x\ne\frac{-7}{2};x\ne\pm3\)

\(MTC:\left(2x+7\right)\left(x-3\right)\left(x+3\right)=\left(2x+7\right)\left(x^2-9\right)\)

\(\left(1\right)\Leftrightarrow\frac{13\left(x+3\right)}{\left(2x+7\right)\left(x^2-9\right)}+\frac{\left(x^2-9\right)}{\left(2x+7\right)\left(x^2-9\right)}=\frac{6\left(2x+7\right)}{\left(2x+7\right)\left(x^2-9\right)}\)

\(\Rightarrow13\left(x+3\right)+\left(x^2-9\right)=6\left(2x+7\right)\)

\(\Leftrightarrow13x+39+x^2-9=12x+42\)

\(\Leftrightarrow13x+x^2+30=12x+42\)

\(\Leftrightarrow x^2+13x-12x+30-42=0\)

\(\Leftrightarrow x^2+x-12\)

\(\Leftrightarrow x^2-3x+4x-12=0\)

\(\Leftrightarrow\left(x^2-3x\right)+\left(4x-12\right)=0\)

\(\Leftrightarrow x\left(x-3\right)+4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)=0\)

Hoặc \(x-3=0\Leftrightarrow x=3\left(L\right)\)

Hoặc \(x+4=0\Leftrightarrow x=-4\left(N\right)\)

Vậy tập nghiệm của phương trình là \(S=\left\{-4\right\}\)

24 tháng 6 2019
Giải :

\(\text{ĐKXĐ :}\:x\ne-\frac{7}{2}\:\text{và}\:x\ne\pm3 \). Mẫu chung là \(\left(2x+7\right)\left(x+3\right)\left(x-3\right)\).

Khử mẫu ta được :

\(13\left(x+3\right)+\left(x+3\right)\left(x-3\right)=6\left(2x+7\right)\Leftrightarrow x^2+x-12=0\)

                                                                                               \(\Leftrightarrow x^2+4x-3x-12=0\)

                                                                                               \(\Leftrightarrow x\left(x+4\right)-3\left(x+4\right)=0\)

                                                                                               \(\Leftrightarrow(x+4)(x-3)=0\)

                                                                                               \(\Leftrightarrow x=-4\:\text{hoặc}\:x=3\)

Trong 2 giá trị tìm được, chỉ có \(x=-4\) là thoả mãn ĐKXĐ. Vậy phương trình có 1 nghiệm duy nhất \(x=-4\).

8 tháng 2 2020

a, \(\frac{x-3}{5}\) = 6 - \(\frac{1-2x}{3}\)

⇔ 3(x - 3) = 90 - 5(1 - 2x)

⇔ 3x - 9 = 90 - 5 + 10x

⇔ 3x - 10x = 90 - 5 + 9

⇔ -7x = 94

⇔ x = \(\frac{-94}{7}\)

S = { \(\frac{-94}{7}\) }

b, \(\frac{3x-2}{6}\) - 5 = \(\frac{3-2\left(x+7\right)}{4}\)

⇔ 2(3x - 2) - 60 = 9 - 6(x + 7)

⇔ 6x - 4 - 60 = 9 - 6x - 42

⇔ 6x + 6x = 9 - 42 + 60 + 4

⇔ 12x = 31

⇔ x = \(\frac{31}{12}\)

S = { \(\frac{31}{12}\) }

c, \(\frac{x+8}{6}\) - \(\frac{2x-5}{5}\) = \(\frac{x+1}{3}\) - x + 7

⇔ 5(x+ 8) - 6(2x - 5) = 10(x+1) - 30x+210

⇔ 5x+ 40 - 12x+ 30 = 10x+ 10 - 30x+210

⇔ 5x - 12x - 10x+ 30x = 10+ 210 - 30- 40

⇔ 13x = 150

⇔ x = \(\frac{150}{13}\)

S = { \(\frac{150}{13}\) }

d, \(\frac{7x}{8}\) - 5(x - 9) = \(\frac{2x+1,5}{6}\)

⇔ 21x - 120(x - 9) = 4(2x + 1,5)

⇔ 21x - 120x + 1080 = 8x + 6

⇔ 21x - 120x - 8x = 6 - 1080

⇔ -107x = -1074

⇔ x = \(\frac{1074}{107}\)

S = { \(\frac{1074}{107}\) }

e, \(\frac{5\left(x-1\right)+2}{6}\) - \(\frac{7x-1}{4}\) = \(\frac{2\left(2x+1\right)}{7}\) - 5

⇔ 140(x-1)+56 - 42(7x-1) = 48(2x+1)-840

⇔ 140x -140+56 -294x+42= 96x+48 -840

⇔ 140x -294x -96x = 48 -840 -42 -56+140

⇔ -250x = -750

⇔ x = 3

S = { 3 }

f, \(\frac{x+1}{3}\) + \(\frac{3\left(2x+1\right)}{4}\) = \(\frac{2x+3\left(x+1\right)}{6}\) + \(\frac{7+12x}{12}\)

⇔ 4(x+1)+9(2x+1) = 4x+6(x+1)+7+12x

⇔ 4x+4+18x+9 = 4x+6x+6+7+12x

⇔ 4x+18x - 4x - 6x - 12x = 6+7- 9 - 4

⇔ 0x = 0

S = R

Chúc bạn học tốt !

22 tháng 4 2020

Bạn ơi giải giúp mình 2 bài này với ạ : https://hoc24.vn/hoi-dap/question/969683.html

Mình cảm ơn trước nhaa

8 tháng 1 2020

1.

\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)

\(MC:12\)

Quy đồng :

\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)

\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)

\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)

\(\Leftrightarrow6x+9-3x=-4-9+16\)

\(\Leftrightarrow-7x=3\)

\(\Leftrightarrow x=\frac{-3}{7}\)

2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)

\(MC:20\)

Quy đồng :

\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)

\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)

\(\Leftrightarrow30x+15-20=15x-2\)

\(\Leftrightarrow15x=3\)

\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)

17 tháng 7 2016

a)\(\frac{1}{x-1}\)-\(\frac{3x2}{x3-1}\)=\(\frac{2x}{x2+x+1}\)

<=> \(\frac{1}{x-1}\)-\(\frac{3x2}{\left(x-1\right)\left(x2+x+1\right)}\)=\(\frac{2x}{x2+x+1}\) ĐKXĐ: x khác 1

<=> x2+x+1 - 3x2 = 2x(x-1)

<=>x2+x+1 - 3x2 = 2x2-2x

<=>x2-3x-1=0( đoạn này làm nhanh nhé)

<=>x2-2*\(\frac{3}{2}\)x +\(\frac{9}{4}\)-\(\frac{9}{4}\)-1=0

<=>(x-\(\frac{3}{2}\))2-\(\frac{13}{4}\)=0

<=>(x-\(\frac{3-\sqrt{13}}{2}\))(x-\(\frac{3+\sqrt{13}}{2}\))=0

\(\begin{cases}x=\frac{3+\sqrt{13}}{2}\\x=\frac{3-\sqrt{13}}{2}\end{cases}\)

17 tháng 7 2016

b) pt... đkxđ x khác 1;2;3

<=>  3(x-3) +2(x-2)=x-1

<=>  3x-9 +2x-4 = x-1

<=> 4x= 12

<=>  x=3 ( ko thỏa đk)

vậy pt vô nghiệm

 

 

https://i.imgur.com/u6zkAVa.jpg
14 tháng 2 2020

Bài 3:

a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)

\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)

\(3\ne0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)

b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)

c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)

Chúc bạn học tốt!