Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Y=\frac{\frac{1}{3}+\frac{1}{9}-\frac{1}{27}}{\frac{5}{3}+\frac{5}{9}-\frac{5}{27}}\)
\(\Rightarrow Y=\frac{\frac{1}{3}+\frac{1}{9}-\frac{1}{27}}{5\cdot\left(\frac{1}{3}+\frac{1}{9}-\frac{1}{27}\right)}\)
\(\Rightarrow Y=\frac{1}{5}\)
K CHO MH NHA
đặt biểu thức đó là X
ta có :
\(3X=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(\Rightarrow3X-X=1-\frac{1}{729}\)
\(\Rightarrow X=\frac{728}{729}.\frac{1}{2}=\frac{364}{729}\)
\(a\)) Giải:
\(A=\frac{\frac{1}{3}+\frac{1}{9}-\frac{1}{27}}{\frac{5}{3}+\frac{5}{9}-\frac{5}{27}}=\frac{\frac{1}{3}+\frac{1}{9}-\frac{1}{27}}{5.\left(\frac{1}{3}+\frac{1}{9}-\frac{1}{27}\right)}=\frac{1}{5}\)
\(b\)) Giải:
\(B=\frac{\frac{2}{3}-\frac{1}{4}+\frac{5}{11}}{\frac{5}{12}+1-\frac{7}{11}}=\frac{\left(\frac{2}{3}-\frac{1}{4}+\frac{5}{11}\right).132}{\left(\frac{5}{12}+1-\frac{7}{11}\right).132}=\frac{88-33+60}{55+132-84}=\frac{115}{103}\)
Ta có:
\(A=16-\frac{-\frac{2}{9}-\frac{2}{10}-\frac{2}{11}-...-\frac{2}{2020}}{\frac{1}{27}+\frac{1}{30}+\frac{1}{33}+...+\frac{1}{6060}}\)
\(\Rightarrow A=16+\frac{\frac{2}{9}+\frac{2}{10}+\frac{2}{11}+...+\frac{2}{2020}}{\frac{1}{27}+\frac{1}{30}+\frac{1}{33}+...+\frac{1}{6060}}\)
\(\Rightarrow A=16+\frac{2\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{2020}\right)}{\frac{1}{3}\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{2020}\right)}\)
\(\Rightarrow A=16+\frac{2}{\frac{1}{3}}\)
\(\Rightarrow A=16+\left(2:\frac{1}{3}\right)\)
\(\Rightarrow A=16+\left(2.3\right)\)
\(\Rightarrow A=16+6\)
\(\Rightarrow A=22\)
Vậy\(A=22\)
A = 16 + (2/9+2/10+....+2/2020)/(1/27+1/30+.....+1/6060)
= 16 + 6
= 22
Tk mk nha
\(b,\)Đặt \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{37\cdot38\cdot39}\)
\(B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{37.38\cdot38}\)
\(2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{37.38}-\frac{1}{38.39}\)
\(2B=\frac{1}{1.2}-\frac{1}{38.39}\)
\(\Rightarrow B=\frac{\left(\frac{1}{1.2}-\frac{1}{38.39}\right)}{2}=\frac{185}{741}\)
A=$\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+......+\frac{1}{59049}$
3A=$\frac{1}+frac{1}{3}+\frac{1}{9}+\frac{1}{27}+......+\frac{1}{19683}$
3A-A=2A=1-1/59049=59048/59049
A=59048/118098