K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{1008}{1009}\)

\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1008}{1009}\)

\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{1008}{1009}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{1008}{1009}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{1008}{1009}\)

\(\Leftrightarrow1-\frac{2}{x+1}=\frac{1008}{1009}\)

\(\Leftrightarrow\frac{-2}{x-1}=\frac{1008}{1009}-1\)

\(\Leftrightarrow\frac{-2}{x+1}=\frac{-1}{1009}\)

\(\Leftrightarrow-1.\left(x+1\right)=-2.1009\)

\(\Leftrightarrow-x-1=-2018\)

\(\Leftrightarrow-x=-2018+1=-2017\)

\(\Leftrightarrow x=2017\)

Vậy x=2017

24 tháng 7 2016

Ta có : 

\(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)....\left(1+\frac{1}{2014.2016}\right)\)

\(=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}.....\frac{4060225}{2014.2016}\)

\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}....\frac{2015.2015}{2014.2016}\)

\(=\frac{2.3.4....2015}{1.2.3....2014}.\frac{2.3.4....2015}{3.4.5....2016}\)

\(=\frac{2015}{1}.\frac{2}{2016}\)

\(=2015.\frac{1}{1008}=\frac{2015}{1008}\)

\(\Rightarrow\frac{2015}{1008}=\frac{x}{1008}\Rightarrow x=2015\)

Vậy \(x=2015\)

Ủng hộ mk nha !!! ^_^

24 tháng 7 2016

ê cần giúp ko0

10 tháng 2 2019

Kết quả =1

12 tháng 3 2019

A=

).23.7.1009
1009
1
.
7
1
.
23
1
1009
1
7
1
23
1
(

).23.7.1009
1009
1
7
1
23
1
(
  
 

+
(23 7).1009 161 1

1
  

=
7.1009 23.1009 23.7 1
7.1009 23.1009 23.7
  
 
+
23.1009 7.1009 23.7 1

1
  
= 1

20 tháng 5 2018

a)\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\Leftrightarrow x\left(x-1\right)^{x+2}\left(x-2\right)=0\)

Do đó \(x\in\left\{0;1;2\right\}\)

25 tháng 7 2018

b)

\(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot...\cdot\frac{31}{64}=2^x\Leftrightarrow\frac{1\cdot2\cdot3\cdot...\cdot31}{4\cdot6\cdot8\cdot...\cdot64}=2^x\Leftrightarrow\frac{31!}{\left(2\cdot2\right)\cdot\left(2\cdot3\right)\cdot\left(2\cdot4\right)\cdot...\cdot\left(2\cdot31\right)\cdot64}=2^x\)

\(\frac{31!}{2^{30}\cdot31!\cdot2^6}=2^x\Leftrightarrow\frac{1}{2^{36}}=2^x\Leftrightarrow2^{-36}=2^x\Rightarrow x=-36\)

20 tháng 4 2017

đặt A là tên biểu thức trên

ta có :

\(A=\left(\frac{1}{7}+\frac{1}{23}-\frac{1}{1009}\right):\left(\frac{1}{23}+\frac{1}{7}-\frac{1}{1009}+\frac{1}{7}.\frac{1}{23}.\frac{1}{1009}\right)+\frac{1}{30.1009-160}\)

\(A=\left(\frac{23.1009}{7.23.1009}+\frac{7.1009}{7.23.1009}-\frac{7.23}{7.23.1009}\right):\left(\frac{7.1009}{23.7.1009}+\frac{23.1009}{23.7.1009}-\frac{23.7}{23.7.1009}+\frac{1}{23.7.1009}\right)+\frac{1}{30.1009-160}\)\(A=\frac{23.1009+7.1009-7.23}{7.23.1009}:\frac{7.1009+23.1009-23.7+1}{7.23.1009}+\frac{1}{30.1009-160}\)

\(A=\frac{23.1009+7.1009-7.23}{7.1009+23.1009-23.7+1}+\frac{1}{30.1009-160}\)

\(A=\frac{30.1009-161}{30.1009-160}+\frac{1}{30.1009-160}\)

\(A=\frac{30.1009-160}{30.1009-160}=1\)

24 tháng 11 2017

nhân hai số đầu với bình phương 23.7.1009 ta có 30109/30110+1/30110=1

23 tháng 4 2016

b)

\(x-2.\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\right)=\frac{16}{9}\)

\(x-2\cdot\left(\frac{1}{3}-\frac{1}{9}\right)=\frac{16}{9}\)

\(x-2=\frac{16}{9}:\left(\frac{1}{3}-\frac{1}{9}\right)\)

\(x-2=8\)

=> x = 10

23 tháng 4 2016

a) 

\(A=\frac{1}{2}.\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\frac{2013}{2014}\cdot\frac{2014}{2015}\cdot\frac{2015}{2016}\)

\(A=\frac{1}{2016}\)

Bài 1:

a) Ta có: \(\frac{5}{6}-\frac{2}{3}+\frac{1}{4}\)

\(=\frac{10}{12}-\frac{8}{12}+\frac{3}{12}\)

\(=\frac{2+3}{12}=\frac{5}{12}\)

b) Ta có: \(1\frac{11}{12}-\frac{5}{12}\cdot\left(\frac{4}{5}-\frac{1}{10}\right):\frac{-5}{12}\)

\(=\frac{23}{12}-\frac{5}{12}\cdot\left(\frac{8}{10}-\frac{1}{10}\right)\cdot\frac{-12}{5}\)

\(=\frac{23}{12}-\frac{5}{12}\cdot\frac{7}{10}\cdot\frac{-12}{5}\)

\(=\frac{23}{12}-\frac{-7}{10}\)

\(=\frac{115}{60}+\frac{42}{60}=\frac{157}{60}\)

Bài 2:

a) Ta có: \(\frac{1}{2}\cdot x-\frac{2}{5}=\frac{1}{5}\)

\(\Leftrightarrow\frac{1}{2}\cdot x=\frac{1}{5}+\frac{2}{5}=\frac{3}{5}\)

\(\Leftrightarrow x=\frac{3}{5}:\frac{1}{2}=\frac{3}{5}\cdot2=\frac{6}{5}\)

Vậy: \(x=\frac{6}{5}\)

b) Ta có: \(\left(1-2x\right)\cdot\frac{4}{3}=\left(-2\right)^3\)

\(\Leftrightarrow\left(1-2x\right)\cdot\frac{4}{3}=-8\)

\(\Leftrightarrow1-2x=-8:\frac{4}{3}=-8\cdot\frac{3}{4}=-6\)

\(\Leftrightarrow-2x=-6-1=-7\)

hay \(x=\frac{7}{2}\)

Vậy: \(x=\frac{7}{2}\)

14 tháng 8 2020

lớp 9 đấy!

26 tháng 6 2016

\(C=\frac{5}{2}\cdot\frac{7}{5}\cdot\frac{9}{7}\cdot\frac{11}{9}\cdot...\cdot\frac{2017}{2015}\cdot\frac{2019}{2017}=\frac{2019}{2}\)

\(D=\left(1-\frac{1}{\frac{2\cdot3}{2}}\right)\cdot\left(1-\frac{1}{\frac{3\cdot4}{2}}\right)\cdot\left(1-\frac{1}{\frac{4\cdot5}{2}}\right)\cdot\left(1-\frac{1}{\frac{5\cdot6}{2}}\right)\cdot...\cdot\left(1-\frac{1}{\frac{39\cdot40}{2}}\right)\)

\(=\left(1-\frac{2}{2\cdot3}\right)\cdot\left(1-\frac{2}{3\cdot4}\right)\cdot\left(1-\frac{2}{4\cdot5}\right)\cdot\left(1-\frac{2}{5\cdot6}\right)\cdot...\cdot\left(1-\frac{2}{39\cdot40}\right)\cdot\)

Nhận xét: \(1-\frac{2}{n\left(n+1\right)}=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n+2\right)\left(n-1\right)}{n\left(n+1\right)}\)nên:

\(D=\frac{4\cdot1}{2\cdot3}\cdot\frac{5\cdot2}{3\cdot4}\cdot\frac{6\cdot3}{4\cdot5}\cdot\frac{7\cdot4}{5\cdot6}\cdot\frac{8\cdot5}{6\cdot7}\cdot...\cdot\frac{41\cdot38}{39\cdot40}=\)

\(D=\frac{4\cdot5\cdot6\cdot7\cdot...\cdot41\times1\cdot2\cdot3\cdot4\cdot...\cdot38}{2\cdot3\cdot4\cdot5\cdot...\cdot39\times3\cdot4\cdot5\cdot6\cdot..\cdot40}=\frac{1}{39}\cdot\frac{41}{3}=\frac{41}{117}\)