Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=1+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{2}\) -\(\frac{1}{3}\) -\(\frac{1}{4}\)+\(\frac{1}{3}\) - \(\frac{1}{4}\)-\(\frac{1}{5}\)+.....+\(\frac{1}{99}\)-\(\frac{1}{100}\)-\(\frac{1}{101}\)
=1+\(\frac{1}{101}\)
=\(\frac{102}{101}\)
1/1.2.3 = 1/2 .[1/1.2 - 1 / 2.3]
1/2.3.4 = 1/2[ 1/2- 1/3 ]
...................
1/99.100.101 = 1/2[ 1/99. 100 - 1/100.101]
=> A= 1/2 [ 1/1.2- 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/ 4.5 +.........+ 1/99 .100 - 1/100. 101]
A = 1/2 . [1/1.2 -1/100 .101]
A= 1/2 . 5049 /10100 = 5049 / 20200.
Mình nghĩ là vậy đó.
A = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+..+\frac{1}{99.100.101}\)
A = \(\frac{1}{2}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{101-99}{99.100.101}\right)\)
A = \(\frac{1}{2}.\left(\frac{3}{1.2.3}-\frac{1}{1.2.3}+\frac{4}{2.3.4}-\frac{2}{2.3.4}+...+\frac{101}{99.100.101}-\frac{99}{99.100.101}\right)\)
A = \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)
A = \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{100.101}\right)\)
A = \(\frac{1}{2}.\frac{5049}{10100}\)
A = \(\frac{5049}{20200}\)
A = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{99.100.101}\)
=> A = \(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)
= \(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{100.101}\right)\)
= \(\frac{1}{2}.\frac{5049}{10100}\)
= \(\frac{5049}{20200}\)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{99.100.101}\)
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{99.100.101}\)
Ta thấy:
\(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3};\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4};...;\frac{2}{99.100.101}=\frac{1}{99.100}-\frac{1}{100.101}\)
\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\)
\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{100.101}\)
\(\Rightarrow2A=\frac{1}{2}-\frac{1}{10100}\)
\(\Rightarrow2A=\frac{5050}{10100}-\frac{1}{10100}\)
\(\Rightarrow2A=\frac{5049}{10100}\Rightarrow A=\frac{5049}{10100}:2=\frac{5049}{20200}\)
a)A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{2009.2010}\)
A=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{2009}-\frac{1}{2010}\)
A=1-\(\frac{1}{2010}\)=\(\frac{2009}{2010}\)
c)C=\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+......+\frac{1}{2006.2008}\)
C=\(\frac{1}{2}\).(\(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+..+\frac{1}{2006}-\frac{1}{2008}\))
C=\(\frac{1}{2}\).(\(\frac{1}{2}-\frac{1}{2008}\))
C=\(\frac{1}{2}\).\(\frac{1003}{2008}\)=\(\frac{1003}{4016}\)
Câu b mình chưa nghĩ ra
Chúc bạn học tốt!
a) A = \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) + ...+ \(\frac{1}{2009.2000}\)
= 1 - \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) + \(\frac{1}{3}\) - \(\frac{1}{4}\) + ... + \(\frac{1}{2009}\) - \(\frac{1}{2000}\)
= 1 - \(\frac{1}{2000}\) = \(\frac{1999}{2000}\)
b) B = \(\frac{1}{1.2.3}\) + \(\frac{1}{2.3.4}\) + \(\frac{1}{3.4.5}\) + ... + \(\frac{1}{1998.1999.2000}\)
= \(\frac{1}{2}\) ( \(\frac{2}{1.2.3}\) + \(\frac{2}{2.3.4}\) + \(\frac{2}{3.4.5}\) + ... + \(\frac{2}{1998.1999.2000}\))
= \(\frac{1}{2}\) (\(\frac{1}{1.2}\) - \(\frac{1}{2.3}\) + \(\frac{1}{2.3}\) - \(\frac{1}{3.4}\) + \(\frac{1}{3.4}\) - \(\frac{1}{4.5}\) + ... + \(\frac{1}{1998.1999}\) - \(\frac{1}{1999.2000}\))
= \(\frac{1}{2}\) (\(\frac{1}{1.2}\) - \(\frac{1}{1999.2000}\))
= \(\frac{1}{2}\) (\(\frac{1}{2}\) - \(\frac{1}{3998000}\))
= \(\frac{1}{4}\) - \(\frac{1}{7996000}\) = ?
c) C = \(\frac{1}{2.4}\) + \(\frac{1}{4.6}\) + \(\frac{1}{6.8}\) + ... + \(\frac{1}{2006.2008}\)
= \(\frac{1}{2}\) (\(\frac{1}{2}\) - \(\frac{1}{4}\)) + \(\frac{1}{2}\)(\(\frac{1}{4}\) - \(\frac{1}{6}\)) + ... + \(\frac{1}{2}\)(\(\frac{1}{2006}\) - \(\frac{1}{2008}\))
= \(\frac{1}{2}\)(\(\frac{1}{2}\) - \(\frac{1}{4}\) + \(\frac{1}{4}\) - \(\frac{1}{6}\) + ... + \(\frac{1}{2006}\) - \(\frac{1}{2008}\))
= \(\frac{1}{2}\)(\(\frac{1}{2}\) - \(\frac{1}{2008}\))
= \(\frac{1}{2}\) . \(\frac{1003}{2008}\) = \(\frac{1003}{4016}\).
\(F=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=\frac{n-1}{n}\)
\(\Rightarrow F=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\)
\(\Rightarrow F=1-\frac{1}{n}=\frac{n}{n}-\frac{1}{n}=\frac{n-1}{n}\left(đpcm\right)\)
\(H=2+4+6+...+2n\)
1) Đặt \(A=1.2+2.3+3.4+....+98.99\)
Ta có:\(3A=3.\left(1.2+2.3+3.4+....+98.99\right)\)
\(3A=1.2.3+2.3.3+3.4.3+....+98.99.3\)
\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+....+98.99.\left(100-97\right)\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+98.99.100-97.98.99\)
\(3A=98.99.100\Rightarrow A=\frac{98.99.100}{3}=323400\)
Ta có:\(\frac{A.y}{1}=184800\Rightarrow y=184800:323400=\frac{4}{7}\)
2)Đặt \(A=\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\right).1428+185,8\)
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+....+\frac{1}{37.38.39}\)
Tổng quát:\(\frac{2}{\left(a-1\right)a\left(a+1\right)}=\frac{1}{\left(a-1\right)a}-\frac{1}{a\left(a+1\right)}\)
Ta có:
\(2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+.....+\frac{2}{37.38.39}\)
\(2B=\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+\left(\frac{1}{3.4}-\frac{1}{4.5}\right)+...+\left(\frac{1}{37.38}-\frac{1}{38.39}\right)\)
\(2B=\frac{1}{1.2}-\frac{1}{38.39}=\frac{370}{741}\Rightarrow B=\frac{370}{741}:2=\frac{185}{741}\)
Khi đó \(A=\frac{185}{741}.1428+185,8=...........\) (tự tính ra)
(*)số ko đẹp mấy
A=1/2 *(1/1*2-1/2*3+1/2*3-1/3*4+........+1/98*99-1/99*100)
=1/2*(1/2-1/99*100)
=1/2*(4950-1/9900)
=4950/19800
\(A=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)
\(A=\frac{1}{2}\left[\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{98\cdot99\cdot100}\right]\)
\(A=\frac{1}{2}\left[\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+....+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right]\)
\(A=\frac{1}{2}\left[\frac{1}{2}-\frac{1}{99\cdot100}\right]=\frac{1}{2}\cdot\frac{4949}{9900}=\frac{4949}{19800}\)
\(\frac{1}{2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{99.100.101}\)
\(=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{99.100.101}\)
\(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{99.100.101}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{100.101}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{10100}\right)\)
\(=\frac{1}{2}.\frac{5049}{10100}=\frac{5049}{20200}\)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{99.100.101}\)
\(\Leftrightarrow A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)
\(\Leftrightarrow A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{100.101}\right)\)
\(\Leftrightarrow A=\frac{1}{2}.\frac{5049}{10100}=\frac{5049}{20200}\)