Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
a) x + 2x + 3x + ... + 100x = - 213
=> 100x + ( 2 + 3 + 4 + ... + 100 ) = - 213
=> 100x + 5049 = - 213
<=> 100x = - 5262
<=> x = - 52,62
#)Giải :
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{2}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{4}\right)x=\frac{1}{2}\)
\(\Rightarrow\frac{3}{4}x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{2}{3}\)
a) \(\frac{x}{-15}=\frac{-60}{x}\)
\(\Rightarrow x^2=900\)
\(\Rightarrow x=30\)
a) Đặt \(x-1=a\)
\(pt\Leftrightarrow\frac{13}{a}+\frac{5}{2a}=\frac{6}{3a}\)
\(\Leftrightarrow\frac{31}{2a}=\frac{6}{3a}\)
\(\Leftrightarrow\frac{31}{2}=2\)(vô lí)
Vậy pt vô nghiệm
a) \(\frac{13}{x-1}+\frac{5}{2x-2}=\frac{6}{3x-3}\)
\(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}=\frac{6}{3\left(x-1\right)}\)
\(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}=\frac{2}{x-1}\)
\(\frac{31}{2\left(x-1\right)}=\frac{2}{x-1}\)
\(\frac{31}{2}=2\)
=> không có x thỏa mãn đề bài.
b) \(\frac{1}{x-1}+\frac{-2}{3}\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{2-2x}\)
\(\frac{1}{x-1}+\frac{-2}{3}.\frac{-9}{20}=\frac{5}{2\left(1-x\right)}\)
\(\frac{1}{x-1}-\frac{-18}{60}=\frac{5}{2\left(1-x\right)}\)
\(\frac{1}{x-1}+\frac{3}{10}=\frac{5}{2\left(1-x\right)}\)
\(10\left(1-x\right)+3\left(x-1\right)\left(1-x\right)=25\left(x-1\right)\)
\(7-4x-3x^2=25x-25\)
\(7-4x-3x^2-25x+25=0\)
\(32-29x-3x^2=0\)
\(3x^2+29x-30=0\)
\(3x^2+32x-3x-32=0\)
\(x\left(3x+32\right)-\left(3x+32\right)=0\)
\(\left(3x+32\right)\left(x-1\right)=0\)
\(\orbr{\begin{cases}3x+32=0\\x-1=0\end{cases}}\)
\(\orbr{\begin{cases}x=-\frac{32}{3}\\x=1\end{cases}}\)
1.\(\frac{x+1}{x-2}=\frac{3}{4}\)
\(\Leftrightarrow\left(x+1\right).4=\left(x-2\right).3\)
\(\Leftrightarrow4x+4=3x-6\)
<=>4x-3x=-6-4
<=>x=-10
2.\(\frac{52}{2x-1}=\frac{13}{30}\)
<=>52.30=(2x-1).13
<=>1560=26x-13
<=>-26x=-13-1560
<=>-26x=-1573
<=>x=60,5
3.\(\frac{2x-3}{x+1}=\frac{4}{7}\)
<=>(2x-3).7=(x+1).4
<=>14x-21=4x+4
<=>14x-4x=4+21
<=>10x=25
<=>x=2,5
4.\(\frac{2x+3}{42}=\frac{3x-1}{32}\)
<=>(2x+3).32=42(3x-1)
<=>64x+96=126x-42
<=>64x-126x=-42-96
<=>-62x=-138
<=>x=69/31
a/
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)\(=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)\(\Rightarrow x=20;y=12;z=42\)
b/\(3x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{3};7y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+20}=2\)
\(\Rightarrow x=20;y=30;z=42\)
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\ \frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1);(2) Suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tĩ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{3y}{36}=\frac{z}{15}=\frac{2x-3y+z}{18-36+15}=\frac{6}{-3}=-2\)
Suy ra
x = (-2) . 9 = -18
y = (-2) . 12 = -24
z = (-2) . 15 = -30
Áp dụng tính chất dãy tỷ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Suy ra
x = 2 . 10 = 20
y = 2 . 6 = 12
z = 2 . 21 = 42
a) Ta có: x/10=y/6=z/24 và 5x+y—2x=28
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
x/10=y/6=z/24=5x/50+y/6–2x/48= 5x+y—2x/50+6–48=28/ 8
Ta được: x= 10.28/8=35
y= 6.28/8=21
z=24.28/8=84
\(a)\)\(\left(\frac{3}{5}\right)^{2x+1}=\frac{81}{625}\)
\(\Leftrightarrow\)\(\left(\frac{3}{5}\right)^{2x+1}=\left(\frac{3}{5}\right)^4\)
\(\Leftrightarrow\)\(2x+1=4\)
\(\Leftrightarrow\)\(x=\frac{3}{2}\)
Vậy \(x=\frac{3}{2}\)
\(b)\)\(\left(\frac{2}{3}\right)^x.\left(\frac{2}{3}\right)^3=\frac{32}{243}\)
\(\Leftrightarrow\)\(\left(\frac{2}{3}\right)^{x+3}=\left(\frac{2}{3}\right)^5\)
\(\Leftrightarrow\)\(x+3=5\)
\(\Leftrightarrow\)\(x=2\)
Vậy \(x=2\)
\(c)\)\(\left(2x-1\right)^2=\left(2x-1\right)^3\)
\(\Leftrightarrow\)\(\left(2x-1\right)^3-\left(2x-1\right)^2=0\)
\(\Leftrightarrow\)\(\left(2x-1\right)^2\left(2x-1-1\right)=0\)
\(\Leftrightarrow\)\(\left(2x-1\right)^2\left(2x-2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\left(2x-1\right)^2=0\\2x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}}\)
Vậy \(x=\frac{1}{2}\) hoặc \(x=1\)
Chúc bạn học tốt ~