Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3}+x\times\frac{2}{7}=\frac{11}{12}\)
\(x\times\frac{2}{7}=\frac{11}{12}-\frac{1}{3}\)
\(x\times\frac{2}{7}=\frac{7}{12}\)
\(x=\frac{7}{12}:\frac{2}{7}\)
\(x=\frac{49}{24}\)
~Moon~
\(\frac{1}{3}+x.\frac{2}{7}=\frac{11}{12}\)
\(x.\frac{2}{7}=\frac{11}{12}-\frac{1}{3}\)
\(x.\frac{2}{7}=\frac{7}{12}\)
\(x=\frac{7}{12}\div\frac{2}{7}\)
\(x=\frac{49}{24}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{1000\cdot1001}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1000}-\frac{1}{1001}\)
\(=1-\frac{1}{1001}\)
\(=\frac{1000}{1001}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{101}-\frac{1}{102}\)
\(=1-\frac{1}{102}\)
\(=\frac{101}{102}\)
1/1.2 + 1/2.3 + 1/3.4 + ... + 1/101.102
Đặt A = 1/1.2 +1/2.3 + 1/3.4 + ... + 1/101.102
A = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/101 - 1/102
A = 1/1 - 1/02
A = 101/102
Vậy A = 101/102
a, \(\frac{3.4.7}{12.8.9}\)= \(\frac{3.4.7}{3.4.8.9}\)= \(\frac{7}{72}\)
b, \(\frac{4.5.6}{12.10.8}\)= \(\frac{4.5.6}{3.4.2.5.8}\)= \(\frac{1}{8}\)
c, \(\frac{5.6.7}{12.14.15}\)= \(\frac{5.6.7}{2.6.2.7.3.5}\)= \(\frac{1}{12}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
= \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{21111111}-\frac{2}{21111112}\)
= \(\frac{1}{1}-\frac{1}{21111112}\)(\(-\frac{1}{2}\)rút gọn cho \(+\frac{1}{2}\)và cứ như vậy đến khi chỉ còn 2 phân số \(\frac{1}{1}\)và \(\frac{1}{21111112}\))
= \(\frac{21111111}{21111112}\)
100% đúng nha bạn
\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{201111111}-\frac{1}{2011111112}\)
\(\frac{1}{1}-\frac{1}{201111112}\)
\(\frac{201111111}{201111112}\)
\(x=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)
\(x=\frac{1}{1}-\frac{1}{5}=\frac{4}{5}\)
x=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5
x=1-1/5
x=4/5