Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left[16\cdot\left(\dfrac{1}{13}-\dfrac{1}{20}+\dfrac{1}{20}-\dfrac{1}{27}+...+\dfrac{1}{62}-\dfrac{1}{69}\right)\right]:\dfrac{-112}{897}\)
\(=16\left(\dfrac{1}{13}-\dfrac{1}{69}\right)\cdot\dfrac{-897}{112}\)
\(=-\dfrac{897}{7}\cdot\dfrac{56}{897}=-8\)
Ta có:
\(A=\frac{112}{13.20}+\frac{112}{20.27}+.........+\frac{112}{62.69}\)
\(\Rightarrow A=112.\left(\frac{1}{13.20}+\frac{1}{20.27}+..........+\frac{1}{62.69}\right)\)
\(\Rightarrow A=16.\left(\frac{7}{13.20}+\frac{7}{20.27}+.......+\frac{7}{62.69}\right)\)
\(\Rightarrow A=16.\left(\frac{1}{13}-\frac{1}{20}+\frac{1}{20}-\frac{1}{27}+........+\frac{1}{62}-\frac{1}{69}\right)\)
\(\Rightarrow A=16.\left(\frac{1}{13}-\frac{1}{69}\right)\)
\(\Rightarrow A=16.\frac{56}{897}\)
\(\Rightarrow A=\frac{896}{897}\)
Vậy: \(A=\frac{896}{897}\)
\(A=\frac{112}{13.20}+\frac{112}{20.27}+\frac{112}{27.34}+...+\frac{112}{62.69}\)
\(\Rightarrow A=112.\left(\frac{1}{13.20}+\frac{1}{20.27}+\frac{1}{27.34}+...+\frac{1}{62.69}\right)\)
\(\Rightarrow A=112.\frac{7}{7}.\left(\frac{1}{13.20}+\frac{1}{20.27}+\frac{1}{27.34}+...+\frac{1}{62.69}\right)\)
\(\Rightarrow A=112.\frac{1}{7}\left(\frac{7}{13.20}+\frac{7}{20.27}+\frac{7}{27.34}+...+\frac{7}{62.69}\right)\)
\(\Rightarrow A=16\left(\frac{1}{13}-\frac{1}{20}+\frac{1}{20}-\frac{1}{27}+\frac{1}{27}-\frac{1}{34}+...+\frac{1}{62}-\frac{1}{69}\right)\)
\(\Rightarrow A=16\left(\frac{1}{13}-\frac{1}{69}\right)\)
\(\Rightarrow A=16.\frac{56}{897}\)
\(\Rightarrow A=\frac{896}{897}\)
\(Can\)\(you\) \(k\) \(for\) \(me,everyone?\)
\(\frac{112}{13.20}+\frac{112}{20.27}+\frac{112}{27.34}+...+\frac{112}{62.69}\)
= \(16.\left(\frac{7}{13.20}+\frac{7}{20.27}+\frac{7}{27.34}+...+\frac{7}{62.69}\right)\)
= \(16.\left(\frac{1}{13}-\frac{1}{20}+\frac{1}{20}-\frac{1}{27}+\frac{1}{27}-\frac{1}{34}+...+\frac{1}{62}-\frac{1}{69}\right)\)
= \(16.\left(\frac{1}{13}-\frac{1}{69}\right)\)
= \(16.\frac{56}{897}\)
= \(\frac{896}{897}\)
\(\frac{112}{13.20}+\frac{112}{20.27}+\frac{112}{27.34}+...+\frac{112}{62.69}\)
\(=16\left(\frac{7}{13.20}+\frac{7}{20.27}+\frac{7}{27.34}+...+\frac{7}{62.69}\right)\)
\(=16\left(\frac{1}{13}-\frac{1}{20}+\frac{1}{20}-\frac{1}{27}+...+\frac{1}{62}-\frac{1}{69}\right)\)
\(=16\left(\frac{1}{13}-\frac{1}{69}\right)=\frac{16}{13}-\frac{16}{69}\)