K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2016

\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}....\frac{30}{62}.\frac{31}{16}=\frac{1.2.3...30.31}{2.3.4....30.31.2^{30}.16}=\frac{1}{2^{30}.2^4}=\frac{1}{2^{34}}=\frac{1}{4^{17}}=\frac{1}{4^x}\)

=> x=17

a: \(\Leftrightarrow\dfrac{1}{2}-\dfrac{7}{12}< x< \dfrac{1}{48}+\dfrac{5}{48}=\dfrac{6}{48}=\dfrac{1}{8}\)

\(\Leftrightarrow-\dfrac{1}{12}< x< \dfrac{1}{8}\)

=>x=0

c: \(\Leftrightarrow x=\dfrac{-1}{2}\cdot\dfrac{1}{4}=\dfrac{-1}{8}\)

d: \(\Leftrightarrow x^8=x^7\)

=>x(x-1)=0

=>x=0(loại) hoặc x=1(nhận)

e: \(\Leftrightarrow3^x=\dfrac{3^{10}}{3^9}=3\)

hay x=1

f: =>x-1=20

hay x=21

28 tháng 8 2019

a,\(\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}=\frac{x+1}{8}+\frac{x+1}{9}\) (1)

<=> \(\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}-\frac{x+1}{8}-\frac{x+1}{9}=0\)

<=> \(\left(x+1\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}-\frac{1}{8}-\frac{1}{9}\right)=0\)

=> x+1=0 (vì \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}-\frac{1}{8}-\frac{1}{9}\ne0\))

<=> x=-1

Vậy pt (1) có tập nghiệm S\(=\left\{-1\right\}\)

b, \(\frac{x+6}{2015}+\frac{x+5}{2016}+\frac{x+4}{2017}=\frac{x+3}{2018}+\frac{x+2}{2019}+\frac{x+1}{2010}\)(2)

<=> \(\frac{x+6}{2015}+1+\frac{x+5}{2016}+1+\frac{x+4}{2017}+1=\frac{x+3}{2018}+1+\frac{x+2}{2019}+1+\frac{x+1}{2020}+1\)

<=> \(\frac{x+2021}{2015}+\frac{x+2021}{2016}+\frac{x+2021}{2017}-\frac{x+2021}{2018}-\frac{x+2021}{2019}-\frac{x+2021}{2020}=0\)

<=> \(\left(x+2021\right)\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)

=> x+2021=0(vì \(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\))

<=> x=-2021

Vậy pt (2) có tập nghiệm S=\(\left\{-2021\right\}\)

c,\(\frac{x+6}{2016}+\frac{x+7}{2017}+\frac{x+8}{2018}=\frac{x+9}{2019}+\frac{x+10}{2020}+1\) (3)

<=> \(\frac{x+6}{2016}-1+\frac{x+7}{2017}-1+\frac{x+8}{2018}-1=\frac{x+9}{2019}-1+\frac{x+10}{2020}-1+1-1\)

<=> \(\frac{x-2010}{2016}+\frac{x-2010}{2017}+\frac{x-2010}{2018}=\frac{x-2010}{2019}+\frac{x-2010}{2020}\)

<=> \(\frac{x-2010}{2016}+\frac{x-2010}{2017}+\frac{x-2010}{2018}-\frac{x-2010}{2019}-\frac{x-2010}{2020}=0\)

<=> \(\left(x-2010\right)\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)

=> x-2010=0 (vì \(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\))

<=> x=2010

Vậy pt (3) có tập nghiệm S=\(\left\{2010\right\}\)

d, \(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15\) (4)

<=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=15-1-2-3-4-5\)

<=> \(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)

<=> (x-100)(\(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\))=0

=> x -100=0(vì \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\))

<=> x=100

Vậy pt (4) có tập nghiệm S=\(\left\{100\right\}\)

28 tháng 8 2019

a) \(\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}=\frac{x+1}{8}+\frac{x+1}{9}\)

\(\Leftrightarrow\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}-\frac{x+1}{8}-\frac{x+1}{9}=0\)

\(\Leftrightarrow\left(x+1\right).\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}-\frac{1}{8}-\frac{1}{9}\right)=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=0-1\)

\(\Rightarrow x=-1\)

Vậy \(x=-1.\)

Mình chỉ làm câu a) thôi nhé.

Chúc bạn học tốt!

24 tháng 12 2016

Bài 2:
a) \(x+\frac{1}{3}=\frac{3}{4}\)

\(\Rightarrow x=\frac{5}{12}\)

Vậy \(x=\frac{5}{12}\)

b) \(\left|x+\frac{1}{8}\right|-\frac{1}{6}=0\)

\(\Rightarrow\left|x+\frac{1}{8}\right|=\frac{1}{6}\)

\(\Rightarrow x+\frac{1}{8}=\frac{1}{6}\) hoặc \(x+\frac{1}{8}=\frac{-1}{6}\)

+) \(x+\frac{1}{8}=\frac{1}{6}\Rightarrow x=\frac{1}{24}\)

+) \(x+\frac{1}{8}=\frac{-1}{6}\Rightarrow x=\frac{-7}{24}\)

Vậy \(x\in\left\{\frac{1}{24};\frac{-7}{24}\right\}\)

c) \(\frac{x}{27}=\frac{-2}{36}\)

\(\Rightarrow\frac{x}{27}=\frac{-1}{18}\)

\(\Rightarrow18x=-27\)

\(\Rightarrow x=\frac{-3}{2}\)

Vậy \(x=\frac{-3}{2}\)

d) \(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)

\(\Rightarrow x+\frac{1}{2}=\frac{1}{4}\) hoặc \(x+\frac{1}{2}=\frac{-1}{4}\)

+) \(x+\frac{1}{2}=\frac{1}{4}\Rightarrow x=\frac{-1}{4}\)

+) \(x+\frac{1}{2}=\frac{-1}{4}\Rightarrow x=\frac{-3}{4}\)

Vậy \(x\in\left\{\frac{-1}{4};\frac{-3}{4}\right\}\)

24 tháng 12 2016

a)\(x+\frac{1}{3}=\frac{3}{4}\)

\(\Rightarrow x=\frac{3}{4}-\frac{1}{3}\)

\(\Rightarrow x=\frac{5}{12}\)

b)\(\left|x+\frac{1}{8}\right|-\frac{1}{6}=0\)

\(\Rightarrow\left|x+\frac{1}{8}\right|=\frac{1}{6}\)

\(\Rightarrow x+\frac{1}{8}=\frac{1}{6}\) hoặc \(x+\frac{1}{8}=-\frac{1}{6}\)

\(\Rightarrow x=\frac{1}{6}-\frac{1}{8}\) hoặc \(x=-\frac{1}{6}-\frac{1}{8}\)

\(\Rightarrow x=\frac{1}{24}\) hoặc \(x=-\frac{7}{24}\)

c)\(\frac{x}{27}=-\frac{2}{36}\)

\(\Rightarrow x=\frac{\left(-2\right)\cdot27}{36}=-\frac{3}{2}\)

d)\(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2=\left(\frac{1}{4}\right)^2=\left(-\frac{1}{4}\right)^2\)

\(\Rightarrow x+\frac{1}{2}=\frac{1}{4}\) hoặc \(x+\frac{1}{2}=-\frac{1}{4}\)

\(\Rightarrow x=\frac{1}{4}-\frac{1}{2}\) hoặc \(x=-\frac{1}{4}-\frac{1}{2}\)

\(\Rightarrow x=-\frac{1}{4}\) hoặc \(x=-\frac{3}{4}\)

 

25 tháng 7 2017

\(=\frac{16}{5}.\frac{15}{16}-\left(\frac{3}{4}+\frac{2}{7}\right):\left(\frac{-29}{28}\right)\)

\(=3-\left(\frac{21}{28}+\frac{8}{28}\right):\left(\frac{-29}{28}\right)\)

\(=3-\left(\frac{29}{28}\right).\left(\frac{-28}{29}\right)\)

\(=3-\left(-1\right)\)

\(=4\)

b)   \(=\left(\frac{1}{4}+\frac{25}{2}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3}{8}-\frac{1}{12}\right)\right)\)

       \(=\left(\frac{4}{16}+\frac{200}{16}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3.3}{2.3.4}-\frac{2}{2.3.4}\right)\right)\)

     \(=\left(\frac{199}{16}\right):\left(12-\frac{7}{12}:\left(\frac{9}{24}-\frac{2}{24}\right)\right)\)

      \(=\frac{199}{16}:\left(12-\frac{7}{12}.\frac{24}{7}\right)\)

    \(=\frac{199}{16}:\left(12-2\right)\)

\(=\frac{199}{16}:10\)

\(=\frac{199}{160}\)

c)   \(\left(\frac{-3}{5}+\frac{5}{11}\right):\frac{-3}{7}+\left(\frac{-2}{5}+\frac{6}{5}\right):\frac{-3}{7}\)

\(\left(\frac{-33}{55}+\frac{25}{55}\right):\frac{-3}{7}+\left(\frac{4}{5}\right):\frac{-3}{7}\)

\(\left(\frac{-8}{55}\right).\frac{-7}{3}+\frac{4}{5}.\frac{-7}{3}\)

\(\frac{-7}{3}\left(\frac{-8}{55}+\frac{4}{5}\right)\)

\(\frac{-7}{3}.\frac{36}{55}=\frac{-84}{55}\)

     

25 tháng 7 2017

giờ mk phải đi ngủ r mai mk làm cho 

18 tháng 10 2018

\(3\frac{1}{2}-\frac{1}{2}.\left(-4,25-\frac{3}{4}\right)^2:\frac{5}{4}\)

\(=\frac{7}{2}-\frac{1}{2}.\left(-4,25-0,75\right)^2:\frac{5}{4}\)

\(=\frac{7}{2}-\frac{1}{2}.\left(-5\right)^2:\frac{5}{4}\)

\(=\frac{7}{2}-\frac{1}{2}.5.\frac{4}{5}\)

\(=\frac{7}{2}-2\)

\(=\frac{7}{2}-\frac{4}{2}\)

\(=\frac{3}{2}\)

\(\frac{3}{7}.1\frac{1}{2}+\frac{3}{7}.0,5-\frac{3}{7}.9\)

\(=\frac{3}{7}.\left(\frac{3}{2}+\frac{1}{2}-9\right)\)

\(=\frac{3}{7}.\left(2-9\right)\)

\(=\frac{3}{7}.\left(-7\right)\)

\(=-3\)

\(\frac{125^{2016}.8^{2017}}{50^{2017}.20^{2018}}=\frac{\left(5^3\right)^{2016}.\left(2^3\right)^{2017}}{\left(5^2\right)^{2017}.2^{2017}.\left(2^2\right)^{2018}.5^{2018}}=\frac{\left(5^3\right)^{2016}.\left(2^3\right)^{2017}}{\left(5^3\right)^{2017}.\left(2^3\right)^{2017}.2.5}=\frac{1}{5^4.2}=\frac{1}{1250}\)( tính nhẩm, ko chắc đúng )

18 tháng 10 2018

a) \(3\frac{1}{2}-\frac{1}{2}\cdot\left(-4,25-\frac{3}{4}\right)^2\) : \(\frac{5}{4}\)

\(3\cdot25:\frac{5}{4}\)

\(3\cdot\left(25:\frac{5}{4}\right)\)

=\(3\cdot20\)

=60

b)=\(\frac{3}{7}\cdot\left(1\frac{1}{2}+0,5-9\right)\)

=\(\frac{3}{7}\cdot\left(-7\right)\)

=\(-3\)

c) = 

8 tháng 8 2017

1) a) \(x^2=2x\Leftrightarrow x^2-2x=0\Leftrightarrow x\left(x-2\right)=0\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\) vậy \(x=0;x=2\)

b) \(x^3=x\Leftrightarrow x^3-x=0\Leftrightarrow x\left(x^2-1\right)=0\) \(\Leftrightarrow x\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+1=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-1\\x=1\end{matrix}\right.\) vậy \(x=0;x=-1;x=1\)

8 tháng 8 2017

\(x^2=2x\Rightarrow x^2-2x=0\Rightarrow x\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-2=0\Rightarrow x=2\end{matrix}\right.\)

\(x^3=x\Rightarrow x^3-x=0\Rightarrow x\left(x^2-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-1=0\Rightarrow x^2=1\Rightarrow x=\pm1\end{matrix}\right.\)

\(A=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{16}-1\right)\left(\dfrac{1}{25}-1\right)...\left(\dfrac{1}{121}-1\right)\)

\(A=\dfrac{-3}{4}.\dfrac{-8}{9}.\dfrac{-15}{16}.\dfrac{-24}{25}...\dfrac{-120}{121}\)

\(A=\dfrac{3.8.15.24....120}{4.9.16.25...121}\)

\(A=\dfrac{1.3.2.4.3.5.4.6....10.12}{2.2.3.3.4.4.5.5....11.11}\)

\(A=\dfrac{1.2.4....10}{2.3.4.5...11}.\dfrac{3.4.5....12}{2.3.4.5....11}\)

\(A=\dfrac{1}{11}.6=\dfrac{6}{11}\)

3) Áp dụng tính chất:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)

\(B=\dfrac{8^{2017}+1}{8^{2018}+1}< 1\)

\(B< \dfrac{8^{2017}+1+8}{8^{2018}+1+8}\)

\(B< \dfrac{8^{2017}+8}{8^{2018}+8}\)

\(B< \dfrac{8\left(8^{2016}+1\right)}{8\left(8^{2017}+1\right)}\)

\(B< \dfrac{8^{2016}+1}{8^{2017}+1}=A\)

\(B< A\)

4 tháng 9 2019

\( \dfrac{1}{2}x - \dfrac{7}{8} = \dfrac{5}{6}x - \dfrac{1}{{16}}\\ \Leftrightarrow \dfrac{1}{2}x - \dfrac{5}{6}x = - \dfrac{1}{{16}} + \dfrac{7}{8}\\ \Leftrightarrow - \dfrac{1}{3}x = \dfrac{{13}}{6}\\ \Leftrightarrow x = \dfrac{{13}}{6}:\left( { - \dfrac{1}{3}} \right)\\ \Leftrightarrow x = - \dfrac{{39}}{{16}} \)

4 tháng 9 2019

Ta sử dụng quy tắc chuyển vế:

\(\frac{1}{2}x-\frac{7}{8}=\frac{5}{6}x-\frac{1}{16}\)

\(\frac{1}{2}x-\frac{5}{6}x=-\frac{1}{16}+\frac{7}{8}\)

\(\frac{3}{6}-\frac{5}{6}x=-\frac{1}{16}+\frac{14}{16}\)

\(-\frac{1}{3}x=\frac{13}{16}\)

\(x=\frac{13}{16}:\left(-\frac{1}{3}\right)\)

\(x=-\frac{39}{16}\)

Hok tốt