Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(9+99+..+9999...9\)
\(=\left(10^1-1\right)+\left(10^2-1\right)+...+\left(10^{100}-1\right)\)
\(=\left(10^1+10^2+...+10^{100}\right)-100\)
Đặt \(A=10+10^2+...+10^{100}\)
\(\Rightarrow10A=10^2+10^3+...+10^{101}\)
\(\Rightarrow10A-A=\left(10^2+10^3+...+10^{101}\right)-\left(10+10^2+..+10^{100}\right)\)
\(\Rightarrow9A=10^{101}-10\)
\(\Rightarrow A=\frac{10^{101}-10}{9}\)
\(\Rightarrow9+99+999+...+999..9=\frac{10^{101}-10}{9}-100\)
999333 = ( 3333 )333 = 333999
=> 333999 = 333999
=> 999333 = 333999
a) A = 9 + 99 + 999 + ... + 999...9
( 50 chữ số)
=> A = (10 - 1) + (100 - 1) + (1000 - 1) + ... + (100...0 - 1)
50 c/s 0
=> A = (10 + 100 + 1000 + ... + 100...0) - (1 + 1 + 1 + ... + 1)
50 c/s 0 50 c/s 1
=> A = 111...1110 - 50
50 c/s 1
=> A = 111...11060
49 c/s 1
b) B = 9 + 99 + 999 + ... + 999...9
200 c/s 9
=> A = (10 - 1) + (100 - 1) + (1000 - 1) + ... + (100...0 - 1)
200 c/s 0
=> A = (10 + 100 + 1000 + ... + 100...0) - (1 + 1 + 1 + ... + 1)
200 c/s 0 200 c/s 1
=> A = 111...1110 - 200
200 c/s 1
=> A = 111...11910
198 c/s 1
\(B=\frac{\frac{2016}{1000}+\frac{2016}{999}+...+\frac{2016}{501}}{\frac{-1}{1.2}+\frac{-1}{3.4}+...+\frac{-1}{999.1000}}=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{999.1000}\right)}\)
\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}\right)}\)
\(=\frac{2016\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{999}+\frac{1}{1000}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1000}\right)\right]}\)
\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{999}+\frac{1}{1000}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{500}\right)\right]}\)
\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+....+\frac{1}{999}+\frac{1}{1000}\right)}=\frac{2016}{-1}=-2016\)
Vậy B = - 2016
Bạn Xyz cho mik hỏi ở phần mẫu số tại sao lại có -2*(1/2+1/4+...+1/1000) vậy? Nó ở đâu ra thế?
what the fắc
where are you low