Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\frac{AB}{AD}=\frac{BC}{DC}\)
mà AB2+AC2=BC2
nên AB =12 ;BC=20
vậy diện h là:96
You have to draw the geometry yourself.
\(A_{ABCD}=AB.AD=12.6=72\left(cm^2\right)\)
M is the midpoint of segment BC so we have: \(BM=MC=\frac{BC}{2}=\frac{6}{2}=3\left(cm\right)\)
For the midpoint of CD is N, we also have: \(DN=NC=\frac{CD}{2}=\frac{12}{2}=6\left(cm\right)\)
We have:
\(A_{AMN}=A_{ABCD}-\left(A_{ABM}+A_{NCM}+A_{ADN}\right)\\ =72-\left(\frac{1}{2}.AB.BM+\frac{1}{2}.NC.MC+\frac{1}{2}AD.DN\right)\\ =72-\left(\frac{1}{2}.12.3+\frac{1}{2}.6.3+\frac{1}{2}.6.6\right)\\ =72-45\\ =27\left(cm^2\right)\)
Thusly, the area of triangle AMN in square centimeters is 27.
- Trans: Tìm diện tích tam giác đều nội tiếp đường tròn bán kính 6cm.
Giả sử ta có \(ΔABC \) nội tiếp \(O;6cm)\) và \(AB=AC=BC=x(cm)\)
Xét \(ΔABC\) đều có: \(O\) là trọng tâm tam giác
\(\Rightarrow \dfrac{AO}{AH}=\dfrac{2}{3}\) (H là hình chiếu của A trên BC)
Mà \(AO=R=6cm \Rightarrow AH=9(cm)\)
Áp dụng định lý Pytago vào \(ΔACH\) có:
\(AC^2 =AH^2+CH^2 \\ \Leftrightarrow x^2 = 9^2 + (\dfrac{x}{2})^2 \\ \Leftrightarrow x=6\sqrt{3}\)
\(\Rightarrow S_{ΔABC}=\dfrac{1}{2} AH.BC=\dfrac{1}{2} . 9.6\sqrt3 = 27\sqrt3 (cm^2)\)
Vậy \(S=27\sqrt{3}cm^2\)