Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+b+1 = 111..11(2n) +444...44(n) + 1 =111...11(n).10n + 111...11(n) +4.111..11(n) +1
= 111...11(n).(10n-1) +6.111..11(n) +1
= 333...332(n) +2.333...33(n) +1 = ( 333.....3(n)+1)2 dpcm
Đặt 111....1<n chữ số 1> là k
Ta có: 111......1<2n chữ số 1>=k.10^n + k
Vì :10^n = 9k + 1
11......1<2n chữ số 1>= k.<9k + 1> +k = 9k^2+k+k = 9k^2 + 2k
Ta có 444........4<n chữ số 4>=4k
vậy a+b+1= 9k^2 +2k+4k+1 = <3k>^2 +2.3k.1 +1^2 = <3k +1>^2
Vậy a+b+1 là một số chính phương
Đặt 111....1<n chữ số 1> là k
Ta có: 111......1<2n chữ số 1>=k.10^n + k
Vì :10^n = 9k + 1
11......1<2n chữ số 1>= k.<9k + 1> +k = 9k^2+k+k = 9k^2 + 2k
Ta có 444........4<n chữ số 4>=4k
vậy a+b+1= 9k^2 +2k+4k+1 = <3k>^2 +2.3k.1 +1^2 = <3k +1>^2
Vậy a+b+1 là một số chính phương
A = 111...1000...0 + 111...1 - 222...2
(n cs 1)(n cs 0) (n cs 1) (n cs 2)
\(A=111...1\cdot10^n+111...1-222...2\)
(n cs 1) ( n cs 1 ) ( n cs 2 )
Đặt K = 111...1 ( n cs 1 ) => 9K + 1 = 10^n
=> A = K( 9k + 1 ) + K - 2K
= 9K^2 + K + K - 2K
= 9K^2 = (3K)^2
=> A là một số chính phương
B = 111...1000...0 + 111...1 + 444...4 + 1
(n cs 1)(n cs 0) (n cs 1) (n cs 4)
\(\Rightarrow B=111...1\cdot10^n+111...1+444...4+1\)
( n cs 1 ) ( n cs 1 ) ( n cs 4 )
Đặt K = 111...1 ( n cs 1 ) => 9K + 1 = 10^n
=> B = K( 9K + 1 ) + K + 4K + 1
= 9K^2 + 6K + 1
= ( 3K + 1 ) ^2
=> B là một số chính phương
Mình nghĩ đề này của bạn nên thêm điều kiện khi cộng vào mỗi chữ số của nó 1 đơn vị ta vẫn luôn được 1 số có 4 chữ số thì bài toán chắc sẽ dễ dàng giải quyết hơn đấy nhỉ!
Gọi số cần tìm là \(x^2=\overline{abcd}\) \(\left(a,b,c,d< 9\&\inℕ\right)\)
Theo đề bài khi cộng mỗi chữ số của nó thêm 1 đơn vị thì ta vẫn được 1 số chính phương nên đặt:
\(y^2=\overline{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\)
\(\Rightarrow\overline{abcd}+1111=y^2\)
\(\Leftrightarrow x^2+1111=y^2\Leftrightarrow y^2-x^2=1111\)
\(\Leftrightarrow\left(y-x\right)\left(y+x\right)=1111=11\cdot101=1\cdot1111\)
Dễ nhận thấy \(y+x>y-x>0\) nên ta xét các TH sau:
Nếu \(\hept{\begin{cases}y-x=11\\y+x=101\end{cases}}\Rightarrow\hept{\begin{cases}x=45\\y=56\end{cases}\left(tm\right)}\Rightarrow\overline{abcd}=2025\)
Nếu \(\hept{\begin{cases}y-x=1\\y+x=1111\end{cases}}\Rightarrow\hept{\begin{cases}x=555\\y=556\end{cases}}\Rightarrow ktm\)
Vậy số cần tìm là 2025
Gọi số cần tìm là a\(^2\), số mới được tạo thành b\(^2\)( a,b là số tự nhiên ) .
Theo đề bài , ta có :
\(b^2-a^2=1111\)( vì thêm mỗi chữ số 1 đơn vị )
\(\Leftrightarrow\left(b+a\right)\left(b-a\right)=1111=1111.1=101.11\)
Vì b > a nên b + a có thể bằng 1111 hoặc 101 , còn b - a chỉ có thể bằng 1 hoặc 11
Giải ra , ta được \(a=555,b=556\)( loại vì số cần tìm là số có 4 chữ số ) và \(a=45,b=56\)( thỏa mãn )
Vậy số cần tìm là \(45^2=2025\)
* Nguồn : https://cunghoctot.vn/forum/topic/nhien-la-so-chinh-phuong-co-4-chu-so