K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 7 2021

a.

\(a+2b+3c=14\Rightarrow2a+4b+6c=28\)

\(P-28=a^2+b^2+c^2-2a-4b-6c\)

\(P-28=\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2-14\ge-14\)

\(\Rightarrow P\ge28-14=14\)

\(P_{min}=14\) khi \(\left(a;b;c\right)=\left(1;2;3\right)\)

b.

\(P^2=\left(a+b+c\right)^2=\left(1.a+\dfrac{1}{2}.2b+\dfrac{1}{3}.3c\right)^2\) 

\(P^2\le\left(1+\dfrac{1}{4}+\dfrac{1}{9}\right)\left(a^2+4b^2+9c^2\right)=\dfrac{49}{36}.2015\)

\(\Rightarrow P\le\dfrac{7\sqrt{2015}}{6}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{6\sqrt{2015}}{7};\dfrac{3\sqrt{2015}}{4};\dfrac{2\sqrt{2015}}{21}\right)\)

NV
28 tháng 7 2021

\(A=\dfrac{\sqrt{20}-6}{\sqrt{14-6\sqrt{5}}}-\dfrac{\sqrt{20}-\sqrt{28}}{\sqrt{12-2\sqrt{35}}}=\dfrac{-2\left(3-\sqrt{5}\right)}{\sqrt{\left(3-\sqrt{5}\right)^2}}+\dfrac{2\left(\sqrt{7}-\sqrt{5}\right)}{\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}}\)

\(=\dfrac{-2\left(3-\sqrt{5}\right)}{3-\sqrt{5}}+\dfrac{2\left(\sqrt{7}-\sqrt{5}\right)}{\sqrt{7}-\sqrt{5}}=-2+2=0\)

\(B=\sqrt{\dfrac{\left(9-4\sqrt{3}\right)\left(6-\sqrt{3}\right)}{\left(6-\sqrt{3}\right)\left(6+\sqrt{3}\right)}}-\sqrt{\dfrac{\left(3+4\sqrt{3}\right)\left(5\sqrt{3}+6\right)}{\left(5\sqrt{3}-6\right)\left(5\sqrt{3}+6\right)}}\)

\(=\sqrt{\dfrac{66-33\sqrt{3}}{33}}-\sqrt{\dfrac{78+39\sqrt{3}}{39}}=\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}\right)=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{3}-1-\sqrt{3}-1\right)=-\sqrt{2}\)

a) Ta có: \(A=\dfrac{\sqrt{10}-3\sqrt{2}}{\sqrt{7-3\sqrt{5}}}-\dfrac{\sqrt{10}-\sqrt{14}}{\sqrt{6-\sqrt{35}}}\)

\(=\dfrac{2\sqrt{5}-6}{3-\sqrt{5}}-\dfrac{2\sqrt{5}-2\sqrt{7}}{\sqrt{7}-\sqrt{5}}\)

\(=\dfrac{\left(2\sqrt{5}-6\right)\left(3+\sqrt{5}\right)}{4}-\dfrac{\left(2\sqrt{5}-2\sqrt{7}\right)\left(\sqrt{7}+\sqrt{5}\right)}{2}\)

\(=\dfrac{\left(\sqrt{5}-3\right)\left(3+\sqrt{5}\right)-\left(2\sqrt{5}-2\sqrt{7}\right)\left(\sqrt{7}+\sqrt{5}\right)}{2}\)

\(=\dfrac{5-9-2\left(5-7\right)}{2}\)

\(=\dfrac{-4-2\cdot\left(-2\right)}{2}\)

\(=0\)

 

 C NHA BN CÂU 45 KO LÀM ĐC

Chọn C

30 tháng 9 2021

\(\dfrac{x-2\sqrt{x}}{x-4}=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

8: Ta có: \(\sqrt{6+2\sqrt{5}}-\dfrac{\sqrt{15}-\sqrt{3}}{\sqrt{3}}\)

\(=\sqrt{5}+1-\sqrt{5}+1\)

=2

Bài 2:

a: Thay x=-2 và y=-1 vào (d), ta được:

-2(m+1)+m+2=-1

=>-2m-2+m+2=-1

=>-m=-1

=>m=1

b: (d): y=2x+3

Tọa độ A là:

y=0 và 2x+3=0

=>x=-3/2 và y=0

=>OA=1,5

Tọa độ B là:

x=0 và y=2*0+3=3

=>OB=3

\(AB=\sqrt{1.5^2+3^2}=1.5\sqrt{5}\)

=>\(C=1.5+3+1.5\sqrt{5}=1.5\sqrt{5}+4.5\)

\(S=\dfrac{1}{2}\cdot OA\cdot OB=2.25\)

4 tháng 8 2021

a) ĐKXĐ\(\left\{{}\begin{matrix}30\ge\dfrac{5}{x^2}\\6x^2\ge\dfrac{5}{x^2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2\ge\dfrac{1}{6}\\x^4\ge\dfrac{5}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2\ge\dfrac{1}{6}\\x^2\ge\sqrt{\dfrac{5}{6}}\end{matrix}\right.\Leftrightarrow x^2\ge\sqrt{\dfrac{5}{6}}\)

Đặt 6x2=a; 5/x2=b (a≥b>0)

\(\Rightarrow ab=30\)

Khi đó phương trình trở thành:

\(\sqrt{ab-b}+\sqrt{a-b}=a\)

\(\Leftrightarrow\sqrt{ab-b}=a-\sqrt{a-b}\)

\(\Leftrightarrow ab-b=a^2-2a\sqrt{a-b}+a-b\)

\(\Leftrightarrow ab=a^2-2a\sqrt{a-b}+a\)

Vì \(a\ne0\) nên chia cả 2 vế cho a, ta được:

\(b=a-2\sqrt{a-b}+1\)

\(\Leftrightarrow a-b-2\sqrt{a-b}+1=0\)

\(\Leftrightarrow\left(\sqrt{a-b}-1\right)^2=0\)

\(\Leftrightarrow a-b=1\)

\(\Leftrightarrow6x^2-\dfrac{5}{x^2}=1\)

\(\Leftrightarrow6x^4-x^2-5=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(6x^2+5\right)=0\)

\(\Leftrightarrow x^2-1=0\left(6x^2+5>0\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(TM\right)\\x=-1\left(TM\right)\end{matrix}\right.\)

Vậy \(S=\left\{-1;1\right\}\)

Tick nha bạn 😘