Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
Bằng một cách thần kì, ta tính được A = \(\dfrac{3^{^{12}}-1}{2}\)
Ta sẽ chứng minh 312 - 1 ⋮ 10, như vậy thì (312 - 1) : 2 là một số nguyên chia hết cho 5
Thật vậy:
Ta có 32 = 9 \(\equiv\) -1 (mod 10)
=> (32)6 \(\equiv\) (-1)6 (mod 10)
=> 312 \(\equiv\) 1 (mod 10)
=> 312 - 1 \(\equiv\) 0 (mod 10)
Hay 312 - 1 chia hết cho 10
Vậy bài toán đã được chứng minh
a,\(2^4\cdot3^5:6^4\)
\(=\frac{2^4\cdot3^6}{\left(2\cdot3\right)^4}\)
\(=\frac{2^4\cdot3^6}{2^4\cdot3^4}\)
\(=3^2\)
Bài 2
\(a,5^3\cdot8=5^3\cdot2^3=10^3=1000\)
\(b,2^5-2019^0=32-1=31\)
\(c,3^3+2^5-1^{10}=27+32-1=58\).
\(d,9^2\cdot33-81\cdot23+5^2=81\cdot33-81\cdot23+25\)
\(=81\cdot\left(33-23\right)+25\)
\(=810+25=835\)
\(g,\left[2^2+6^2\right]:5+11^2\)
\(=\left[4+36\right]:5+121\)
\(=40:5+121=8+121\)
\(=129\)
\(d,\frac{14\cdot3^{10}-5\cdot3^{10}}{3^{12}}\)
\(=\frac{3^{10}\cdot\left(14-5\right)}{3^{12}}\)
\(=\frac{3^{10}\cdot9}{3^{12}}\)
\(=\frac{3^{10}\cdot3^2}{3^{12}}=\frac{3^{12}}{3^{12}}\)
\(=1\)