Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 9:
BPT $x^2-4\leq 0\Leftrightarrow (x-2)(x+2)\leq 0$
$\Leftrightarrow -2\leq x\leq 2(1)$
Giờ phải xem 4 phương án phương án nào có tập nghiệm y chang (1)
Xét thấy đáp án B đkxđ là $x\geq -2$
$\sqrt{x+2}(x-2)\leq 0$
$\Leftrightarrow x-2\leq 0$ (do $\sqrt{x+2}\geq 0$ với mọi $x\geq -2$)
$\Leftrightarrow x\leq 2$
Vậy bpt có nghiệm $-2\leq x\leq 2$
Đáp án B/
Câu 12:
Ta sẽ dò xem ở khoảng/ đoạn giá trị nào thì $f(x)\geq 0$. Theo bảng thì $f(x)\geq 0$ khi mà $x\in [-3;1)\cup [2;+\infty)$
Đáp án C/
a: \(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=\left|\overrightarrow{CB}\right|=10a\)
b: \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\dfrac{BC}{2}=5a\)
1: (x-1)^2+(y+2)^2=25
=>R=5; I(1;-2)
2: Δ'//Δ nên Δ': 3x-4y+c=0
d(I;Δ')=5
=>\(\dfrac{ \left|3\cdot1+\left(-2\right)\cdot\left(-4\right)+c\right|}{\sqrt{3^2+\left(-4\right)^2}}=5\)
=>|c+11|=25
=>c=14 hoặc c=-36
=>3x-4y+14=0 hoặc 3x-4y-36=0
3x-4y+14=0
=>VTPT là (3;-4) và (Δ') đi qua A(2;5)
=>VTCP là (4;3)
=>PTTS là x=2+4t và y=5+3t
3x-4y-36=0
=>VTPT là (3;-4) và (Δ') đi qua B(0;-9)
=>VTCP là (4;3)
PTTS là x=0+4t và y=-9+3t
1: vecto AC=(-2;2)
=>VTCP là (-2;2); vtpt là (2;2)
2: vecto AB=(-10;-2)=(5;1)
=>VTPT của Δ là (5;1)
vtcp của Δ là (-1;5)
\(\overrightarrow{AC}=\left(-2;2\right)=2\left(-1;1\right)\) nên đường thẳng AC nhận \(\left(-1;1\right)\) là 1 vtcp và \(\left(1;1\right)\) là 1 vtpt
b.
\(\overrightarrow{BA}=\left(10;2\right)=2\left(5;1\right)\) ; mà \(\Delta\perp AB\) nên \(\Delta\) nhận (5;1) là 1 vtpt và \(\left(1;-5\right)\) là 1 vtcp
Lời giải:
a.
\((2-3x^2)^5=\sum\limits_{k=0}^52^k(-3x^2)^{5-k}=\sum\limits_{k=0}^52^k(-3)^{5-k}x^{10-2k}\)
b.
$10-2k=6$
$\Leftrightarrow k=2$
Hệ số gắn với $x^6$ là: \(2^2(-3)^{5-2}=-108\)
D
D