K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

\(\hept{\begin{cases}\left(x+\frac{2019}{2020}\right)^{100}\ge0\\\left(y-\frac{9}{11}\right)^{200}\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x+\frac{2019}{2020}=0\\y-\frac{9}{11}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-2019}{2020}\\y=\frac{9}{11}\end{cases}}\)

16 tháng 7 2019

Ta có : \(\left[x+\frac{2019}{2020}\right]^{100}\ge0\forall x\)

\(\left[y-\frac{9}{11}\right]^{200}\ge0\forall y\)

\(\Leftrightarrow\left[x+\frac{2019}{2020}\right]^{100}+\left[y-\frac{9}{11}\right]^{200}\ge0\forall x,y\)

Dấu " = " xảy ra khi : \(\hept{\begin{cases}x+\frac{2019}{2020}=0\\y-\frac{9}{11}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{2019}{2020}\\y=\frac{9}{11}\end{cases}}\)

16 tháng 7 2019

\(\left|x-\frac{2}{3}\right|+\left|y+\frac{5}{9}\right|=0\)

Vì \(\left|x-\frac{2}{3}\right|\ge0\)và \(\left|y+\frac{5}{9}\right|\ge0\)nên \(\left|x-\frac{2}{3}\right|+\left|y+\frac{5}{9}\right|\ge0\)

(Dấu "="\(\Leftrightarrow\)\(\left|x-\frac{2}{3}\right|=0\)và \(\left|y+\frac{5}{9}\right|=0\))

\(\Leftrightarrow\hept{\begin{cases}x=\frac{2}{3}\\y=\frac{-5}{9}\end{cases}}\)

vì \(\left|x-\frac{2}{3}\right|>0\)hoặc =0 ;\(\left|y+\frac{5}{9}\right|>0\)hoặc =o

\(\left|x-\frac{2}{3}\right|+\left|y+\frac{5}{9}\right|=0\)

nên |x-2/3| =0 và |y+5/9|=0

\(\Rightarrow\hept{\begin{cases}x-\frac{2}{3}=0\\y+\frac{5}{9}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{2}{3}\\y=\frac{-5}{9}\end{cases}}}\)

16 tháng 7 2019

a.\(A=\left|\frac{x}{5}+\frac{23}{2}\right|+\left|y-\frac{14}{3}\right|+2019\)

Ta có: \(\left|\frac{x}{5}+\frac{23}{2}\right|\ge0\forall x\)

          \(\left|y-\frac{14}{3}\right|\ge0\forall x\)

    \(\Rightarrow\left|\frac{x}{5}+\frac{23}{2}\right|+\left|y-\frac{14}{3}\right|\ge0\forall x\)

   \(\Rightarrow\left|\frac{x}{5}+\frac{23}{2}\right|+\left|y-\frac{14}{3}\right|+2019\ge2019\)

Dấu = xảy ra khi :

        \(\frac{x}{5}+\frac{23}{2}=0\Leftrightarrow\frac{x}{5}=-\frac{23}{2}\Leftrightarrow x=-\frac{115}{2}\)

         \(y-\frac{14}{3}=0\Leftrightarrow y=\frac{14}{3}\)

Vậy ..............

16 tháng 7 2019

Ta có:

a) \(\left|\frac{x}{5}+\frac{23}{2}\right|\ge0\forall x\)

   \(\left|y-\frac{14}{3}\right|\ge0\forall y\)

=> \(\left|\frac{x}{5}+\frac{23}{2}\right|+\left|y-\frac{14}{3}\right|+2019\ge2019\forall x;y\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\frac{x}{5}+\frac{23}{2}=0\\y-\frac{14}{3}=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{115}{2}\\y=\frac{14}{3}\end{cases}}\)

Vậy Min của A = 2019 tại \(\hept{\begin{cases}x=-\frac{115}{2}\\y=\frac{14}{3}\end{cases}}\)

câu b tượng tự 

2 tháng 5 2018

\(H=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)\cdot\cdot\cdot\cdot\cdot\left(1-\frac{1}{100}\right)\)

\(\Leftrightarrow H=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot\cdot\cdot\cdot\cdot\frac{99}{100}\)

\(\Leftrightarrow H=\frac{1.2.3.4.....99}{2.3.4.5.....100}\)

\(\Leftrightarrow H=\frac{1}{100}\)

2 tháng 5 2018

\(H=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{99}{100}\)

\(H=\frac{1.2.3.4...99}{2.3.4.5...100}\)

\(H=\frac{1}{100}\)

Vậy \(H=\frac{1}{100}.\)

7 tháng 6 2020

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)

=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)

=> \(2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2019}{2020}\)

=> \(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2019}{2020}\)

=> \(1-\frac{2}{x+1}=\frac{2019}{2020}\)

=> \(\frac{2}{x+1}=\frac{1}{2020}=\frac{2}{4040}\)

=> x + 1 = 4040 => x = 4039

Y
14 tháng 5 2019

Đặt \(a=\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{2019^2}\)

\(b=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\)

Khi đó : \(D=ab-\left(b+1\right)\left(a-1\right)\)

\(\Rightarrow D=ab-\left(ab+a-b-1\right)\)

\(\Rightarrow D=b-a+1=\frac{1}{2020^2}-1+1=\frac{1}{2020^2}\)