Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pt đường tròn đã cho có thể viết dưới dạng:
\(\left(x-2\right)^2+\left(y-3\right)^2=25\)
Ta tìm được tọa độ tâm I là \(I\left(2;3\right)\). Do đó \(OI=\sqrt{2^2+3^2}=\sqrt{13}\).
Đồng thời \(R=5\)
Ta có \(\dfrac{OI}{R}=\dfrac{\sqrt{13}}{5}\Leftrightarrow5OI=R\sqrt{13}\approx R.3,606\)
(Bạn xem lại đề nhé, với kết quả này thì mình không thấy mệnh đề nào trong 4 mệnh đề kia đúng cả.)
Đáp án: D
Ta có:
(C): x 2 + y 2 + 4x + 6y + 3 = 0 ⇔ (x + 2 ) 2 + (y + 3 ) 2 = 10
Vậy I(-2;-3), R = 10
Ta có x 2 + y 2 + 4 x − 6 y − 3 = 0 ⇔ x + 2 2 + y − 3 2 = 16 nên đường tròn có tâm I(-2; 3) và bán kính R = 4.
Chú ý. Học sinh có thể áp dụng công thức tính tâm và bán kính của đường tròn khi biết phương trình tổng quát của đường tròn
ĐÁP ÁN D
a) Để tìm tọa độ tâm và bán kính của đường tròn ©, ta cần viết lại phương trình của nó dưới dạng chuẩn:
\begin{align*}
x^2 + y^2 - 2x + 6y - 2 &= 0 \
\Leftrightarrow (x-1)^2 + (y+3)^2 &= 14
\end{align*}
Vậy, tọa độ tâm của đường tròn © là $(1,-3)$ và bán kính của đường tròn © là $\sqrt{14}$.
b) Đường tròn có tâm $I(4,3)$ và đi qua $A(-4,1)$ có phương trình là:
$$(x-4)^2 + (y-3)^2 = (-4-4)^2 + (1-3)^2 = 20$$
c) Để tìm phương trình đường tròn (C') có tâm là $I(4,3)$ và cắt đường thẳng $d: 3x+4y-4=0$ tại hai điểm $M$ và $N$ sao cho $MN=6$, ta có thể làm như sau:
Tìm giao điểm $H$ của đường thẳng $d$ và đường vuông góc với $d$ đi qua $I$.Tìm hai điểm $M$ và $N$ trên đường thẳng $d$ sao cho $HM=HN=3$.Xây dựng đường tròn (C') có tâm là $I$ và bán kính bằng $IN=IM=\sqrt{3^2+4^2}=5$.
Để tìm giao điểm $H$, ta cần tìm phương trình của đường thẳng vuông góc với $d$ đi qua $I$. Đường thẳng đó có phương trình là:
$$4x - 3y - 7 = 0$$
Giao điểm $H$ của đường thẳng này và $d$ có tọa độ là $(\frac{52}{25}, \frac{9}{25})$.
Để tìm hai điểm $M$ và $N$, ta có thể sử dụng công thức khoảng cách giữa điểm và đường thẳng. Khoảng cách từ điểm $H$ đến đường thẳng $d$ là:
$$d(H,d) = \frac{|3\cdot \frac{52}{25} + 4\cdot \frac{9}{25} - 4|}{\sqrt{3^2+4^2}} = \frac{1}{5}$$
Vậy, hai điểm $M$ và $N$ cách $H$ một khoảng bằng $\frac{3}{5}$ và $\frac{4}{5}$ đơn vị theo hướng vuông góc với $d$. Ta có thể tính được tọa độ của $M$ và $N$ như sau:
$$M = \left(\frac{52}{25} - \frac{4}{5}\cdot 4, \frac{9}{25} + \frac{3}{5}\cdot 3\right) = \left(\frac{12}{25}, \frac{54}{25}\right)$$
và
$$N = \left(\frac{52}{25} + \frac{4}{5}\cdot 4, \frac{9}{25} + \frac{4}{5}\cdot 3\right) = \left(\frac{92}{25}, \frac{27}{5}\right)$$
Cuối cùng, phương trình đường tròn (C') có tâm là $I(4,3)$ và cắt đường thẳng $d$ tại hai điểm $M$ và $N$ sao cho $MN=6$ là:
$$(x-4)^2 + (y-3)^2 = 5^2$$
Đáp án: D
(C): x 2 + y 2 - 4x + 6y - 12 = 0 ⇔ (x - 2 ) 2 + (y + 3 ) 2 = 25
Vậy đường tròn (C) có I(2;-3), R = 5