Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường thẳng xx' cắt yy' tại O. Biết số đo góc xOy = 40 độ. Tỉ số giữa số đo góc x'Oy' và góc xOy' là
x'Oy'=40 độ ( đối đỉnh vs góc xOy)
xOy'=140 độ( kề bù vs góc xOy)
Số ở giữa là 90 độ
Giải
_ Ta có \(\widehat{xOy}=\widehat{x'Oy'}=40^0\)( đối đỉnh) => \(\widehat{xOm}=\widehat{mOy}=\widehat{y'On}=\widehat{nOx'}=\frac{40^0}{2}=20^0\)
_ \(\widehat{x'Oy}=\widehat{xOy'}=180^0-40^0=140^0\)
Ta có:
xx' và yy' cắt nhau tại O -> góc xOy' đối đỉnh với góc x'Oy
mà góc xOy'=63 độ (đối đỉnh thì bằng nhau)
Vậy góc x'Oy= 63 độ
ta có: xx' và yy' cắt nhau tại O
=> góc xOy' = góc x'Oy = 63 độ ( đối đỉnh)
=> góc x'Oy = 63 độ
Sai đề rồi bạn nha . Mk chứng minh lỗi nha
Vì đường thằng \(xx'\)cắt \(yy'\)tại \(O\)
\(\Rightarrow xOx'=180^o\)
Vì \(xx'\)là 1 đường thẳng .
[ \(Ox\)đối với \(Ox'\)]
Vì vậy nên \(xOy+yOx'=180^o\)( cắt tại O )