K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

a/ \(63^7< 64^7=\left(4^3\right)^7=4^{21}\)

    \(16^{12}=\left(4^2\right)^{12}=4^{24}\)

Suy ra \(63^7< 4^{21}< 4^{24}=16^{12}\)

Vậy \(63^7< 16^{12}\)

    

19 tháng 7 2017

a) \(63^7\)và \(16^{12}\)
Có \(63^7< 64^7=\left(2^6\right)^7=2^{42}\)
\(16^{12}=\left(2^4\right)^{12}=2^{48}\)
Mà \(2^{42}< 2^{48}\Rightarrow63^7< 64^7< 16^{12}\)=) \(63^7< 16^{12}\)
b) \(17^{14}\)và \(31^{11}\)
Có \(17^{14}>16^{14}=\left(2^4\right)^{14}=2^{56}\)
\(31^{11}< 32^{11}=\left(2^5\right)^{11}=2^{55}\)
Vì \(2^{56}>2^{55}\Rightarrow17^{14}>16^{14}>32^{11}>31^{11}\)
=) \(17^{14}>31^{11}\)
c) \(2^{67}\)và \(5^{21}\)
Có \(5^{21}< 8^{21}=\left(2^3\right)^{21}=2^{63}\)
Vì \(2^{67}>2^{63}\Rightarrow2^{67}>8^{21}>5^{21}\)
=) \(2^{67}>5^{21}\)

30 tháng 7 2019

\(63^7< 64^7=\left(2^6\right)^7=2^{42};16^{12}=\left(2^4\right)^{12}=2^{48}\Rightarrow63^7< 16^{12}\)

\(17^{14}>16^{14}=\left(2^4\right)^{14}=2^{56};31^{11}< 32^{11}=\left(2^5\right)^{11}=2^{55}\Rightarrow17^{14}>31^{11}\)

\(2^{67}=2^{63}.16=128^9.16;5^{21}=125^7\Rightarrow2^{67}>5^{21}\)

\(2^{100}=1024^{10};10^{30}=1000^{10}\Rightarrow\frac{2^{10}}{10^3}=\frac{128}{125}< \frac{20}{19}< \frac{19}{18}< .....< \frac{11}{10}\Rightarrow\frac{2^{100}}{10^3}=\left(\frac{2^{10}}{10^3}\right)^{10}< \frac{20}{19}.\frac{19}{18}.....\frac{11}{10}=2\Rightarrow2^{100}< 2.10^{30}< 10.10^{30}=10^{31}\)

`@` `\text {Ans}`

`\downarrow`

`1,`

`a)`

`3^12` và `5^8`

\(3^{12}=\left(3^3\right)^4=9^4\)

\(5^8=\left(5^2\right)^4=25^4\)

Vì `9 < 25` `=> 25^4 > 9^4`

`=> 3^12 > 5^8`

Vậy, `3^12 > 5^8`

`b)`

`(0,6)^9` và `(-0,9)^6`

\(\left(0,6\right)^9=\left(0,6^3\right)^3=\left(0,216\right)^3\)

\(\left(-0,9\right)^6=\left[\left(-0,9\right)^2\right]^3=\left(0,81\right)^3\)

Vì `0,81 > 0,216 => (0,81)^3 > (0,216)^3`

`=> (0,6)^9 < (-0,9)^6`

Vậy, `(0,6)^9<(-0,9)^6`

26 tháng 6 2023

1.a) Có 312 = 33.4 = 274 ;

58 = 52.4 = 254 

Dễ thấy 274 > 254 nên 312 > 58

b) Có  \(0,6^9=\dfrac{6^9}{10^9}=\dfrac{6^{3.3}}{10^9}=\dfrac{216^3}{10^9}\) 

mà \(\left(-0,9\right)^6=0,9^6=\dfrac{9^6}{10^6}=\dfrac{9^6.10^3}{10^9}=\dfrac{9^{2.3}.10^3}{10^9}=\dfrac{81^3.10^3}{10^9}=\dfrac{810^3}{10^9}\)

Dễ thấy \(\dfrac{216^3}{10^9}< \dfrac{810^3}{10^9}\Rightarrow0,6^9< \left(-0,9\right)^6\)