Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{\left(4a^2-1\right)\left(b-c\right)-\left(4b^2-1\right)\left(a-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\dfrac{4c^2-1}{\left(a-c\right)\left(b-c\right)}\)
\(=\dfrac{4a^2b-4a^2c-b+c-4ab^2+4b^2c+a-c}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\dfrac{4ac^2-4bc^2-a+b}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)
\(=\dfrac{4a^2b-4a^2c+a-b-4ab^2+4b^2c+4ac^2-4bc^2-a+b}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)
\(=\dfrac{4a^2b-4ab^2-4a^2c+4ac^2-4bc^2+4b^2c}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)
\(=\dfrac{4a^2\left(b-c\right)+4bc\left(b-c\right)-4a\left(b^2-c^2\right)}{\left(b-c\right)\left(a-c\right)\left(a-b\right)}\)
\(=\dfrac{4a^2+4bc-4a\left(b+c\right)}{\left(a-c\right)\left(a-b\right)}\)
\(=\dfrac{4a^2-4ab+4bc-4ac}{\left(a-c\right)\left(a-b\right)}\)
\(=\dfrac{4a\left(a-b\right)-4c\left(a-b\right)}{\left(a-c\right)\left(a-b\right)}=4\)
\(\dfrac{a}{\left(a-b\right)\left(a-c\right)}+\dfrac{b}{\left(b-c\right)\left(b-a\right)}+\dfrac{c}{\left(c-a\right)\left(c-b\right)}=\dfrac{a}{\left(a-b\right)\left(a-c\right)}-\dfrac{b}{\left(b-c\right)\left(a-b\right)}+\dfrac{c}{\left(a-c\right)\left(b-c\right)}=\dfrac{a\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}-\dfrac{b\left(a-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\dfrac{c\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=\dfrac{ab-ac}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}-\dfrac{ab-bc}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\dfrac{ac-bc}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=\dfrac{ab-ac-ab+bc+ac-bc}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=\dfrac{0}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=0\)
Đặt vế trái là P:
Áp dụng BĐT Bunhiacopxki:
\(\sqrt{\left(a+b\right)\left(c+a\right)}\ge\sqrt{\left(\sqrt{ac}+\sqrt{ab}\right)^2}=\sqrt{ab}+\sqrt{ac}\)
Tương tự với 2 biểu thức còn lại, ta được:
\(P\le\dfrac{a}{a+\sqrt{ab}+\sqrt{ac}}+\dfrac{b}{b+\sqrt{ab}+\sqrt{bc}}+\dfrac{c}{c+\sqrt{ac}+\sqrt{bc}}\)
\(P\le\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\dfrac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Bạn tham khảo ở đây nhé.
https://olm.vn/hoi-dap/detail/96898674827.html
Bài này có bạn giải rồi:
Cho các số thực dương a,b,c.Chứng minh rằng :\(\dfrac{b\left(2a-b\right)}{a\left(b+c\right)}+\dfrac{c\left(2b-c\right)}{... - Hoc24
1.
Đặt \(\left(x;y;z\right)=\left(\dfrac{a}{a+b};\dfrac{b}{b+c};\dfrac{c}{c+a}\right)\Rightarrow\left\{{}\begin{matrix}1-x=\dfrac{b}{b+a}\\1-y=\dfrac{c}{b+c}\\1-z=\dfrac{a}{a+c}\end{matrix}\right.\)
\(\Rightarrow xyz=\dfrac{1}{8}\\ xyz=\left(1-x\right)\left(1-y\right)\left(1-z\right)\\ \Rightarrow xyz=1-\left(x+y+z\right)+\left(xy+yz+zx\right)-xyz\\ \Rightarrow2xyz=1-\left(x+y+z\right)+\left(xy+yz+zx\right)=\dfrac{1}{4}\\ \Rightarrow x+y+z=\dfrac{3}{4}+xy+yz+zx\)
\(\RightarrowĐpcm\)
\(N=\dfrac{\left(a-b\right)\left(b+c\right)\left(a+c\right)+\left(b-c\right)\left(a+b\right)\left(c+a\right)+\left(c-a\right)\left(a+b\right)\left(b+c\right)+\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)\(=\dfrac{\left(a+c\right)\left(ab-b^2+ac-bc+ab-ac+b^2-cb\right)+\left(c-a\right)\left(ab+b^2+ac+bc+ab-b^2-ac+cb\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)\(=\dfrac{\left(a+c\right)\left(2ab-2bc\right)+\left(c-a\right)\left(2ab+2bc\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(=\dfrac{2b\left(a+c\right)\left(a-c\right)+2b\left(c-a\right)\left(a+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\dfrac{2b\left(c+a\right)\left(a-c+c-a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)
Mình chỉ biết mỗi cách quy đồng...... Rồi kết hợp ....