Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay a+b+c=2017 vào \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2017}\) ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Rightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\)\(\Rightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)\(\Rightarrow\left(a+b\right)\left(\frac{c\left(a+b+c\right)+ab}{abc\left(a+b+c\right)}\right)=0\)
\(\Rightarrow\left(a+b\right)\left(\frac{c\left(b+c\right)+ca+ab}{abc\left(a+b+c\right)}\right)=0\)
\(\Rightarrow\left(a+b\right)\left[c\left(b+c\right)+ca+ab\right]=0\)
\(\Rightarrow\left(a+b\right)\left[c\left(b+c\right)+a\left(b+c\right)\right]=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow\)\(a+b=0\) hoặc \(b+c=0\) hoặc \(c+a=0\)
\(\Rightarrow\)\(c=2017\)hoặc \(a=2017\) hoặc \(b=2017\left(đpcm\right)\)
Ta có: \(x^2-y+\frac{1}{4}=y^2-x+\frac{1}{4}=0\)
\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow}x=y=\frac{1}{2}\)
Vậy \(x=y=\frac{1}{2}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(ab+ac+bc\right)\left(a+b+c\right)-abc=0\)
\(\Leftrightarrow\left(b+c\right)\left(ab+ac+bc\right)+a\left(ab+ac+bc\right)-abc=0\)
\(\Leftrightarrow\left(b+c\right)\left(ab+ac+bc\right)+a\left(ab+bc\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left(ab+ac+bc\right)+a^2\left(c+b\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left(ab+ac+bc+a^2\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left(a+c\right)\left(a+b\right)=0\)
=> a=-b hoặc b=-c hoặc c = -a
Không mất tình tổng quát, giả sử a=-b -> a^n = -b^n ( n lẻ):
\(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{c^n}=\frac{1}{a^n+b^b+c^n}\)
Có 1/a + 1/b + 1/c = 0
<=> 1/a = -1/b - 1/c = \(\frac{-b-c}{bc}\)
<=> a. - (b+c) = bc <=> - a. (b+c) = bc
<=> (b+c)^2 = bc ( vì a+b+c=0 nên -a = b+c)
<=> b^2 + 2bc + c^2 = bc
<=> b^2 + bc + c^2 = 0
<=> (b+1/4c)^2 + c^2 = 0
<=> b+1/4c = 0 và c = 0 ( mâu thuẫn giả thiết)
=> ko tồn tại các số a.b.c khác 0 tm đk trên
Áp dụng BĐT Cauchy ta có: \(\frac{1}{a^2+1}=\frac{\left(a^2+1\right)-a^2}{a^2+1}=1-\frac{a^2}{a^2+1}\ge1-\frac{a^2}{2a}=1-\frac{a}{2}\)
Hoàn toàn tương tự ta được
\(\frac{1}{b^2+1}\ge1-\frac{b}{2};\frac{1}{c^2+1}\ge1-\frac{c}{2};\frac{1}{d^2+1}\ge1-\frac{d}{2}\)
Cộng theo vế của từng BĐT trên ta được
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{1}{d^2+1\ge2}\)
Dấu "=" xảy ra khi a=b=c=d=1
Nguồn: Nguyễn Thị Thúy
Ta có: abcd=1 và a+b+c+d=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\)
Do đó: a+b-\(\left(\frac{1}{a}+\frac{1}{b}\right)+c+d-\left(\frac{1}{c}+\frac{1}{d}\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(1-\frac{1}{ab}\right)+\left(c+d\right)\left(1-\frac{1}{cd}\right)=0\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(ab-1\right)}{ab}+\left(c+d\right)\left(1-ab\right)=0\)
\(\Leftrightarrow\left(ab-1\right)\left(\frac{a+b}{ab}-c-d\right)=0\)
\(\Leftrightarrow\left(ab-1\right)\left(a+b-abc-abd\right)=0\)
\(\Leftrightarrow\left(ab-1\right)\left[a\left(1-bc\right)+b\left(1-ad\right)\right]=0\)
\(\Leftrightarrow\left(ab-1\right)\left[a\left(1-bc\right)+b\left(abcd-ad\right)\right]=0\)
\(\Leftrightarrow\left(ab-1\right)\left(1-bc\right)\left(a-abd\right)=0\)
\(\Leftrightarrow a\left(ab-1\right)\left(1-bc\right)\left(1-bd\right)=0\)
<=> ab-1=0 hoặc 1-bc=0 hoặc 1-bd=0
<=> ab=1 hoặc bc=1 hoặc bd=1
\(\Leftrightarrow a\left(ab-1\right)\left(1-bc\right)\left(1-bd\right)=0\)