Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử độ dài cạnh thứ ba là x ( cm ).
Theo hệ quả về bất đẳng thức tam giác ta có:
10 – 2 < x < 10 + 2
Hay 8 < x < 12
Trong các phương án chỉ có phương án D: 9cm thỏa mãn.
Chọn đáp án (D) 9cm.
Gọi độ dài cạnh thứ ba của tam giác là x cm (x > 0)
Áp dụng bất đẳng thức trong tam giác ta có: 10 – 2 < x < 10 + 2
Hay 8 < x < 12
Trong bốn đáp án A, B, C, D thì đáp án D thỏa mãn vì 8 < 9 < 12
Vậy độ dài cạnh thứ ba là 9 cm.
Chọn đáp án D
Gọi cạnh còn lại có độ dài là x, theo bất đẳng thức tam giác ta có:
7-3 < x < 7 + 3 ⇒ 4 < x < 10. Chọn B
Gọi độ dài cạnh thứ ba là x. Khi đó theo bất đẳng thức tam giác ta có 8 - 4 < x < 8 + 4 ⇒ 4 < x < 12. Nên chọn B
a) Áp dụng Bđt tam giác, ta được:
7-2<a<7+2
\(\Leftrightarrow5< a< 9\)
hay \(a\in\left\{6;7;8\right\}\)
b) Trường hợp 1: Độ dài cạnh bên còn lại là 1cm
=> Trái với BĐT tam giác vì 1cm+1cm<4cm
Trường hợp 2: Độ dài cạnh bên còn lại là 4cm
=> Đúng với BĐT tam giác vì 4cm+4cm>1cm; 4cm+1cm>5cm
Chu vi tam giác là:
4cm+4cm+1cm=9(cm)
Gọi cạnh còn lại có độ dài là x, theo bất đẳng thức tam giác ta có:
10 - 2 < x < 10 + 2 ⇒ 8 < x < 12. Chọn D
Gọi cạnh còn lại có độ dài là \(x\), theo bất đẳng thức tam giác ta có:
\(7-1< x< 7+1\Rightarrow6< x< 8\)
⇒ \(x=7\)
Chọn D
Gọi độ dài cạnh còn lại của tam giác là `x (x \ne 0,`\(\in N\)\(\text{*}\) `)`
Theo bất đẳng thức tam giác ta có:
`1+7 > x > 7-1`
`-> 8> x> 6`
`-> x= {7}`
Xét các đáp án `-> D (tm)`