Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này ta sẽ phải vận dụng linh hoạt hằng đẳng thức hiệu 2 bình phương là chính: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\(4b^2c^2-\left(b^2+c^2-a^2\right)^2=\left(2bc\right)^2-\left(b^2+c^2-a^2\right)^2\)
\(=\left(2bc-b^2-c^2+a^2\right).\left(2bc+b^2+c^2-a^2\right)\)
\(=\left(a^2+2bc-b^2-c^2\right)\left(2bc+b^2+c^2-a^2\right)=\left[a^2-\left(b^2-2bc+c^2\right)\right].\left[\left(b^2+2bc+c^2\right)-a^2\right]\)
\(=\left[a^2-\left(b-c\right)^2\right].\left[\left(b+c\right)^2-a^2\right]=\left(a-b+c\right)\left(a+b+c\right)\left(b+c-a\right)\left(b+c+a\right)\)
Vì a,b,c là độ dài 3 cạnh của tam giác nên theo bất đẳng thức tam giác:
+a+c > b => a+c-b > 0
+b+c > a=>b+c-a > 0
+a+b+c và b+c+a hiển hiên đều lớn hơn 0
Nên \(\left(a-b+c\right)\left(a+b+c\right)\left(b+c-a\right)\left(b+c+a\right)>0\)
\(=>4b^2c^2-\left(b^2+c^2-a^2\right)^2>0\left(đpcm\right)\)
câu a: ta có:
(x+y)=(x-y)=x(x-y)+y(x-y)
=x2 - xy +yx - y2
=(-xy+yx) + x2 - y2 = x2 - y2
Vậy x2 - y2 = (x+y) (x-y)
còn câu b mình hông bik=)))))
\(^{x^2-y^2=x^2+xy-y^2-xy=x\left(x+y\right)-y\left(x+y\right)=\left(x+y\right)\left(x-y\right)..}\)
\(\text{Ta có:
}a^2\left(b+c\right)-b^2\left(a+c\right)=2020\)
\(\Leftrightarrow a^2b+a^2c-b^2a-b^2c=0\)
\(\Leftrightarrow\left(a^2b-b^2a\right)+\left(a^2c-b^2c\right)=0\)
\(\Leftrightarrow ab\left(a-b\right)+c\left(a^2-b^2\right)=0\)
\(\Leftrightarrow ab\left(a-b\right)+c\left(a+b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left[ab+c\left(a+b\right)\right]=0\)
\(\Leftrightarrow\left(a-b\right)\left(ab+ac+bc\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\ab+ac+bc=0\end{cases}}\)
\(\text{Xét phần }ab+ac+bc=0,\text{ta có}\)
\(ab+ac=-bc\)
\(\Leftrightarrow a\left(b+c\right)=-bc\)
\(\Leftrightarrow a^2\left(b+c\right)=-abc\)
\(\Leftrightarrow2020=-abc\)
\(\Leftrightarrow abc=-2020\)
\(\text{Lại có: }ac+bc=-ab\)
\(\Leftrightarrow c\left(a+b\right)=-ab\)
\(\Leftrightarrow c^2\left(a+b\right)=-abc\)
\(\Leftrightarrow A=2020\)
Bài 1:
a) \(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{2012.2015}\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2012}-\frac{1}{2015}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{2015}\right)\)
\(A=\frac{1}{3}\cdot\frac{2013}{4030}=\frac{671}{4030}\)
Bài 2:
ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=\frac{b+c+a+c+a+b}{a+b+c}=\frac{2a+2b+2c}{a+b+c}\)
\(=\frac{2.\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=2\)
\(\Rightarrow A=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)
Bài 3:
a) f(1) = 4/1 = 4
=> f(1) = 4
g(-1) = (-1)^2 = 1
=> g(-1) = 1
h(-5) = -2.(-5)^2 - 5/(-5) = -2.25 + 1 = -50 + 1 = -49
=> h(-5) = -49
b) ta có: k(x)=f(x)+g(x)+h(x)
=> k(x) = 4/x + x^2 -2x^2 - 5/x
k(x) = - (5/x - 4/x) - (2x^2-x^2)
k(x) = -1/x - x
\(k_{\left(x\right)}=\frac{-1}{x}-\frac{x.x}{x}=\frac{-1-x^2}{x}\)
c) Để k(x) = 0
=> -1-x^2/x = 0 ( x khác 0)
=> -1-x^2 = 0
=> x^2 = -1
=> không tìm được x
Bài 4:
a) Xét tam giác ABC vuông tại A
có: góc B + góc C = 90 độ ( 2 góc phụ nhau)
thay số: 60 độ + góc C = 90 độ
góc C = 90 độ - 60 độ
góc C = 30 độ
=> AB = BC/2 ( cạnh đối diện với góc 30 độ)
thay số: 5 = BC/2
=> BC = 5.2
=> BC = 10 cm
Xét tam giác ABC vuông tại A
có: AC^2 + AB^2 = BC^2 ( py - ta - go)
thay số: AC^2 + 5^2 = 10^2
AC^2 + 25 = 100
AC^2 = 75
\(\Rightarrow AC=\sqrt{75}\) cm
Ta có :
\(\left(a-b\right)^2\ge0\) ( với mọi độ dài a, b )
\(\left(b-c\right)^2\ge0\) ( với mọi độ dài b, c )
Mà \(\left(a-b\right)^2+\left(b-c\right)^2=0\)
\(\Rightarrow\)\(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\end{cases}}\)
\(\Rightarrow\)\(\hept{\begin{cases}a-b=0\\b-c=0\end{cases}}\)
\(\Rightarrow\)\(\hept{\begin{cases}a=b\\b=c\end{cases}}\) ( chuyển vế )
Do đó :
\(a=b=c\)
Suy ra : tam giác ABC là tam giác đều
Vậy tam giác ABC là tam giác đều
Chúc bạn học tốt ~
Ta có \(\left(a-b\right)^2\ge0\)với mọi độ dài của a, b
và \(\left(b-c\right)^2\ge0\)với mọi độ dài của b, c
Mà \(\left(a-b\right)^2+\left(b-c\right)^2=0\)(gt)
=> \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\end{cases}}\)=> \(\hept{\begin{cases}a-b=0\\b-c=0\end{cases}}\)=> \(\hept{\begin{cases}a=b\\b=c\end{cases}}\)=> a = b = c
=> \(\Delta ABC\)đều (đpcm)