Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:=>3x=15
=>x=5
b: =>8-11x<52
=>-11x<44
=>x>-4
c: \(VT=\left(\dfrac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2x-6}+\dfrac{x}{6-x}\)
\(=\dfrac{12x-36}{2x-6}\cdot\dfrac{1}{x-6}-\dfrac{x}{x-6}=\dfrac{6}{x-6}-\dfrac{x}{x-6}=-1\)
\(\Leftrightarrow\dfrac{x+10}{2012}+1+\dfrac{x+8}{2014}+1+\dfrac{x+6}{2016}+1+\dfrac{x+4}{2018}+1=0\)
\(\Leftrightarrow\dfrac{x+2022}{2012}+\dfrac{x+2022}{2014}+\dfrac{x+2022}{2016}+\dfrac{x+2022}{2018}=0\Leftrightarrow x=-2022\)
do 2 pt tương đường nhau nên x = -2022 cũng là nghiệm của pt
\(\left(m-1\right)x+2020m-6=0\)
thay vào ta được : \(-2022\left(m-1\right)+2020m-6=0\)
\(\Leftrightarrow-2m+2022-6=0\Leftrightarrow-2m=-2016\Leftrightarrow m=1008\)
`(x-1)/2013+(x-2)/2012+(x-3)/2011=(x-4)/2010+(x-5)/2009 +(x-6)/2008`
`<=> ((x-1)/2013-1)+((x-2)/2012-1)+((x-3)/2011-1)=( (x-4)/2010-1)+((x-5)/2009-1)+((x-6)/2008-1)`
`<=> (x-2014)/2013 +(x-2014)/2012+(x-2014)/2011=(x-2014)/2010+(x-2014)/2009+(x-2014)/2008`
`<=> x-2014=0` (Vì `1/2013+1/2012+1/2011-1/2010-1/2009-1/2008 \ne 0`)
`<=>x=2014`
Vậy `S={2014}`.
\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)
\(\Leftrightarrow\left(\dfrac{x-1}{2013}-1\right)+\left(\dfrac{x-2}{2012}-1\right)+\left(\dfrac{x-3}{2011}-1\right)=\left(\dfrac{x-4}{2010}-1\right)+\left(\dfrac{x-5}{2009}-1\right)+\left(\dfrac{x-6}{2008}-1\right)\)
\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}=\dfrac{x-2014}{2010}+\dfrac{x-2014}{2009}+\dfrac{x-2014}{2008}\)
\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}-\dfrac{x-2014}{2010}-\dfrac{x-2014}{2009}-\dfrac{x-2014}{2008}=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\right)=0\)
\(\Leftrightarrow\left(x-2014\right).A=0\)
\(\text{Vì A }\ne0\)
\(\Rightarrow x-2014=0\)
\(\Leftrightarrow x=2014\)
\(\text{Vậy phương trình có tập nghiệm là }S=\left\{2014\right\}\)
\(\dfrac{x-45}{55}+\dfrac{x-47}{53}=\dfrac{x-55}{45}+\dfrac{x-53}{47}\)
\(\Leftrightarrow\left(\dfrac{x-45}{55}-1\right)+\left(\dfrac{x-47}{53}-1\right)=\left(\dfrac{x-55}{45}-1\right)+\left(\dfrac{x-53}{47}-1\right)\)
\(\Leftrightarrow\dfrac{x-100}{55}+\dfrac{x-100}{53}=\dfrac{x-100}{45}+\dfrac{x-100}{47}\)
\(\Leftrightarrow\dfrac{x-100}{55}+\dfrac{x-100}{53}-\dfrac{x-100}{45}-\dfrac{x-100}{47}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{55}+\dfrac{1}{53}-\dfrac{1}{45}-\dfrac{1}{47}\right)=0\)
Do \(\dfrac{1}{55}+\dfrac{1}{53}-\dfrac{1}{45}-\dfrac{1}{47}\ne0\) nên x - 100 = 0 <=> x = 100
ĐKXĐ: \(x\notin\left\{0;1\right\}\)
a) Thay m=1 vào phương trình, ta được:
\(\dfrac{2x+1}{x}=1+\dfrac{x+1}{x-1}\)
\(\Leftrightarrow\dfrac{2x+1}{x}=\dfrac{x-1+x+1}{x-1}\)
\(\Leftrightarrow\dfrac{2x+1}{x}=\dfrac{2x}{x-1}\)
\(\Leftrightarrow2x^2=\left(2x+1\right)\left(x-1\right)\)
\(\Leftrightarrow2x^2=2x^2-2x+x-1\)
\(\Leftrightarrow2x^2-2x^2+2x-x-1=0\)
\(\Leftrightarrow x-1=0\)
hay x=1(loại)
Vậy: Khi m=1 thì \(S=\varnothing\)
a)\(\dfrac{x+121}{1890}+\dfrac{x+81}{1930}+\dfrac{x+66}{1945}=\dfrac{x+57}{1954}+\dfrac{x+36}{1975}+\dfrac{x+1}{2010}\)
\(\Leftrightarrow\dfrac{x+121}{1890}+1+\dfrac{x+81}{1930}+1+\dfrac{x+66}{1945}+1=\dfrac{x+57}{1954}+1+\dfrac{x+36}{1975}+1+\dfrac{x+1}{2010}+1\)
\(\Leftrightarrow\dfrac{x+2011}{1890}+\dfrac{x+2011}{1930}+\dfrac{x+2011}{1945}=\dfrac{x+2011}{1954}+\dfrac{x+2011}{1975}+\dfrac{x+2011}{2010}\)
\(\Leftrightarrow\dfrac{x+2011}{1890}+\dfrac{x+2011}{1930}+\dfrac{x+2011}{1945}-\dfrac{x+2011}{1954}-\dfrac{x+2011}{1975}-\dfrac{x+2011}{2010}=0\)
\(\Leftrightarrow\left(x+2011\right)\left(\dfrac{1}{1890}+\dfrac{1}{1930}+\dfrac{1}{1945}-\dfrac{1}{1954}-\dfrac{1}{1975}-\dfrac{1}{2010}\right)=0\)
\(\Rightarrow x+2011=0\Rightarrow x=-2011\)
Toàn là các năm gắn liền với những sự kiện quan trọng không.