Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=mx-m+1\)\(\Leftrightarrow x^2-mx+m-1=0\)
Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta=\left(-m\right)^2-4.1\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2>0\)\(\Leftrightarrow m-2\ne0\)\(\Leftrightarrow m\ne2\)
Khi đó \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)(hệ thức Vi-ét)
Độ dài cạnh huyền của tam giác vuông có 2 cgv là \(x_1,x_2\)là \(\sqrt{x_1^2+x_2^2}=\sqrt{\left(x_1+x_2\right)^2-2x_1x_2}=\sqrt{m^2-2\left(m-1\right)}=\sqrt{m^2-2m+2}\)
Ta có \(x_1x_2=\frac{1}{\sqrt{5}}\sqrt{m^2-2m+2}\)hệ thức lượng trong tam giác vuông.
\(\Leftrightarrow m-1=\frac{1}{\sqrt{5}}\sqrt{m^2-2m+2}\)\(\Leftrightarrow\frac{m-1}{\sqrt{m^2-2m+2}}=\frac{1}{\sqrt{5}}\)\(\Leftrightarrow\sqrt{\frac{m^2-2m+1}{m^2-2m+2}}=\sqrt{\frac{1}{5}}\)\(\Leftrightarrow\frac{m^2-2m+1}{m^2-2m+2}=\frac{1}{5}\)\(\Leftrightarrow5m^2-10m+5=m^2-2m+2\)\(\Leftrightarrow4m^2-8m+3=0\)
\(\Delta_1=\left(-8\right)^2-4.4.3=16>0\)
\(\Rightarrow\orbr{\begin{cases}m_1=\frac{-\left(-8\right)+\sqrt{16}}{2.4}=\frac{3}{2}\\m_2=\frac{-\left(-8\right)-\sqrt{16}}{2.4}=\frac{1}{2}\end{cases}}\)
Vậy để [...] thì \(\orbr{\begin{cases}m=\frac{3}{2}\\m=\frac{1}{2}\end{cases}}\)
a) Xét pt hoành độ gđ của (d) và (P):
\(x^2-mx+m-1=0\) (*)
Thay m=4 vào pt (*) => x=3 và x=1 thay vào (P) suy ra được tung độ tương ứng y=9 và y=1
Đ/a: \(\left(3;9\right),\left(1;1\right)\)
b) Để (d) và (P) cắt nhau tại hai điểm pb <=> \(\Delta>0\) <=> \(m^2-4\left(m-1\right)>0\) <=> \(\left(m-2\right)^2>0\) <=> \(m\ne2\)
Theo giả thiết => \(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}=\dfrac{1}{\left(\dfrac{1}{\sqrt{5}}\right)^2}\) (Áp dụng hệ thức lượng trong tam giác vuông)
\(\Leftrightarrow\dfrac{x^2_1+x_2^2}{x_1^2.x_2^2}=5\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-5\left(x_1x_2\right)^2=0\)
\(\Leftrightarrow m^2-2\left(m-1\right)-5\left(m-1\right)^2=0\)
\(\Leftrightarrow-4m^2+8m-3=0\) \(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=\dfrac{1}{2}\end{matrix}\right.\)
Vậy...
Vì phương trình có 2 nghiệm phân biệt \(x_1,x_2\) nên theo hệ thức VI-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=m+5\\x_1x_2=3m+6\end{matrix}\right.\)
Mà \(x_1,x_2\) là độ dài của hai cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền bằng 5 nên ta có:\(\Rightarrow x_1^2+x_2^2=25\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=25\Rightarrow\left(m+5\right)^2-2\left(3m+6\right)=25\Leftrightarrow m^2+10m+25-6m-12=25\Leftrightarrow m^2+4m-12=0\Leftrightarrow m^2-2m+6m-12=0\Leftrightarrow\left(m-2\right)\left(m+6\right)=0\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-6\end{matrix}\right.\) b Vì phương trình có 2 nghiệm phân biệt \(x_1,x_2\) nên theo hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2m-6\\x_1x_2=2m-2\end{matrix}\right.\) \(\Rightarrow T=\left(x_1+x_2\right)^2-2x_1x_2=\left(2m-6\right)^2-2\left(2m-2\right)=4m^2-24m+36-4m+4=4m^2-28m+40=4m^2-28m+49-9=\left(2m-7\right)^2-9\ge-9\) Dấu = xảy ra \(\Leftrightarrow m=\dfrac{7}{2}\)
a: Khi m=3 thì (1): x^2-3x+2*3-4=0
=>x^2-3x+2=0
=>x=1 hoặc x=2
b:
Δ=(-m)^2-4(2m-4)
=m^2-8m+16=(m-4)^2
Để phương trình có hai nghiệm phân biệt thì m-4<>0
=>m<>4
Theo đề, ta có: x1^2+x2^2=13
=>(x1+x2)^2-2x1x2=13
=>m^2-2(2m-4)=13
=>m^2-4m+8-13=0
=>m^2-4m-5=0
=>(m-5)(m+1)=0
=>m=5 hoặc m=-1
Đáp án B